LEARNING **FROM NATURE: THE ECHINOID STRATEGY TO DESIGN**A LIGHTWEIGHT AND RESISTANT SHELL STRUCTURE

BIOMIMETIC RESEARCH ON THE MECHANICAL DESIGN OF THE ECHINOID TEST AIMED TO CREATE NEW BIOINSPIRED LIGHTWEIGHT SHELL STRUCTURE

Interdisciplinary team: engineers, biologists, designers

Francesco MARMO^a, Valentina PERRICONE^{*b}, Gabriele PONTILLO^b, Carla LANGELLA^c, Luciano ROSATI^a

^a Dept. of Structures for Engineering and Architecture, University of Naples Federico II, Napoli, Italy
^b Dept. of Engineering, University of Campania Luigi Vanvitelli, Aversa, Italy
^c Dept. of Architecture and Industrial Design, University of Campania Luigi Vanvitelli, Aversa, Italy

THE BIOMIMETIC PROCESS

METHOD AND TOOLS

Visual survey (macro and microscale)

Photogrammetry

3D Modelling

Three-point bending test

FEM

Abstraction of the design principle

3D modelling of the bioinspired shell

1. VISUAL SURVEY

Symmetry plane

		Visual survey MICROSCALE	
Interambulacral area		Interambulacral plate	Vertical section of the plate
Thrivalent vertex (Y)	Interlocking	Suture	Finger joints
SE 50W X30 WB68mm 10µ4			

THE FUNCTIONAL FEATURES THAT CONTRIBUTE TO THE STABILITY OF THE ECHINOID STRUCTURE AND INFLUENCE ITS MECHANICAL BEHAVIOUR ARE:

1. ARRANGEMENT 2. PLATE CURVATURE 3. SUTURES

1. ARRANGEMENT: trivalent vertex (Y)

2. PLATE CURVATURE

CURVED EDGES

Curved hinges avoid mechanisms even with just one line of support per plate, yet being locally movable

3. SUTURES

Interlocking micro-structure and colloidal filaments that make sutures flexible-rigid

3. SUTURES

Flexible-rigid sutures

An easy way to model the nonlinear behaviour of sutures

2. RECONSTRUCTION AND ANALYSIS OF THE ECHINOID TEST

3D model

Photogrammetry

3D mesh for FEM

Monolithic and segmented FEM models

Maximum bending principal component

WHAT HAVE WE LEARNED FROM ECHINOIDS' TEST?

Global mechanisms are avoided by:

- Trivalent vertex
- curved edges
- interlocking at large rotations

Identified biological principle: flexible sutures reduce bending actions

WHAT CAN BE USED IN SHELL STRUCTURES?

Global mechanisms/large displacements are controlled by:

- Trivalent vertex
- curved edges
- locking large rotations

Abstraction of the biological principle:

segmentation + cylindrical hinges: produce significant reduction of bending actions in shells

3. THE BIOINSPIRED SHELL

ABSTRACTION AND EMULATION

Discontinuous structure

Hexahonal modules

Thrivalent vertex (Y)

Curved edges

Flexible sutures

7168

THE BIOINSPIRED SHELL STRUCTURE