ElWood

Questa guida

Questa guida si riferisce all'ambiente ElWood per la progettazione e verifica di elementi monodimensionali in legno e relativ unioni realizzate con collegamenti acciaio-legno, della Softing srl e ne descrive le funzioni principali. Tutti i diritti su questo manuale sono di proprietà della Softing srl.

© 2015-2018 Softing srl. Tutti i diritti riservati.

Ultima revisione: 21 settembre 2019.

Accordo di licenza d'uso del software Softing

1. Licenza. A fronte del pagamento del corrispettivo della licenza, compreso nel prezzo di acquisto di questo prodotto, e all'osservanza dei termini e delle condizioni di questa licenza la Softing s.r.l., nel seguito Softing, cede all'acquirente, nel seguito Licenziatario, un diritto non esclusivo e non trasferibile di utilizzo di questa copia di programma software, nel seguito Software.

2. Proprietà del software. La Softing mantiene la piena proprietà di questa copia di programma Software e della documentazione ad essa allegata. Pertanto la Softing non vende alcun diritto sul Software sul quale mantiene ogni diritto.

3. Utilizzo del software. Questo Software contiene segreti commerciali. È espressamente proibito effettuare copie o modifiche o reingegnerizzazioni, sotto qualsiasi forma e con qualsiasi mezzo, anche parziali, del Software e della documentazione a esso allegata. Il Licenziatario è responsabile a tutti i fini legali per qualunque infrazione causata o incoraggiata dalla non osservanza dei termini di questa licenza. È consentito effettuare una sola copia del Software esclusivamente per installazione su un solo disco rigido.

4. Cessione del software. Il software viene ceduto in licenza unicamente al Licenziatario e non può essere ceduto a terzi. In nessun caso è consentito cedere, assegnare, affidare, affittare o disporre in altro modo del Software se non nei termini qui espressamente specificati.

5. Cessazione. Questa licenza ha la durata di anni dieci. Il Licenziatario può porvi termine in ogni momento con la completa distruzione del Software. Questa licenza si intende cessata, senza onere di comunicazione da parte di Softing, qualora vi sia inadempienza da parte del Licenziatario delle condizioni della licenza.

6. Esonero della garanzia del software. Il Licenziatario si fa carico di ogni rischio derivante, dipendente e connesso all'uso de Software. Il Software e la relativa documentazione vengono forniti nello stato in cui si trovano. Softing si esonera espressamente da ogni garanzia espressa o implicita ivi inclusa, ma senza limitazioni, la garanzia implicita di commerciabilità e di idoneità del prodotto a soddisfare particolari scopi. Softing non garantisce che le funzioni contenute nel Software siano idonee a soddisfare le esigenze del Licenziatario né garantisce una operatività ininterrotta o immune da difetti del Software né che i difetti riscontrati nel software vengano corretti. Softing non garantisce l'uso o i risultati derivanti dall'uso del Software e della documentazione né la loro correttezza, affidabilità e accuratezza. Le eventuali informazioni orali o scritte di esponenti o incaricati di Softing non inficiano questo esonero di garanzia.

7. Limitazioni di responsabilità. Softing è espressamente sollevata da ogni responsabilità per qualsiasi danno, diretto o indiretto, di ogni genere e specie, derivante dall'uso o dal non uso del Software e della relativa documentazione. In ogni casc i limiti di responsabilità di Softing nei confronti del Licenziatario per il complesso dei danni, delle perdite, e per ogni altra causa, sarà rappresentato dall'importo dal Licenziatario corrisposto a Softing per il relativo Software.

8. Foro esclusivo. In caso di controversie relative a questo accordo, sarà esclusivamente competente a decidere l'Autorità

Giudiziaria di Roma.

9. Obbligatorietà ed interezza dell'Accordo. Il Licenziatario, avendo letto il testo che precede ed avendo riscontrato che questa Licenza e la Garanzia Limitata che contiene sono accettabili, le accetta senza condizioni e conferma, con l'atto di accettare l'installazione del Software, la sua volontà di vincolarsi alla scrupolosa osservanza di questo Accordo. Il Licenziatari dà altresì atto che quanto precede costituisce la totalità delle intese intercorse e che pertanto esso annulla e sostituisce ogni eventuale precedente accordo o comunicazione tra le parti.

SOFTING NON GARANTISCE CHE LE FUNZIONI CONTENUTE NEL SOFTWARE SIANO IDONEE A SODDISFARE LE ESIGENZE DEL LICENZIATARIO NÉ GARANTISCE UNA OPERATIVITÀ ININTERROTTA O IMMUNE DA DIFETTI DEL SOFTWARE NÉ CHE I DIFETTI RISCONTRATI VENGANO CORRETTI. SOFTING NON GARANTISCE L'USO O I RISULTATI DERIVANTI DALL'USO DEL SOFTWARE E DELLA DOCUMENTAZIONE NÉ LA LORO CORRETTEZZA, AFFIDABILITÀ E ACCURATEZZA.

Le informazioni contenute in questo documento sono soggette a cambiamento senza preavviso e non costituiscono impegnc alcuno da parte della Softing s.r.l. Nessuna parte di questo manuale e per nessun motivo può essere utilizzata se non come aiuto all'uso del programma.

Nòlian è registrato presso il Registro Pubblico Speciale per i programmi per Elaboratore in data 14/07/2000 al progressivo 001629, ordinativo D002017; EasyBeam in data 14/05/96 al progressivo 000348, ordinativo D000409; EasySteel in data 14/05/96 al progressivo 000346, ordinativo D000407; EasyWall in data 14/05/96 al progressivo 000347, ordinativo D000408, MacSap in data 23/11/97 al progressivo 000222, ordinativo D000264, ArchiLink in data 14/07/2000 al progressivo 001630, ordinativo D002018.

Softing[®], il logo Softing, Nòlian[®], il logo Nòlian[®], Mac-Sap[®], MacBeam[®], CADSap[®], EasyWall[®], EasySteel[®], EasyBeam[®], EasyFrame[®], EasyWorld[®], HyperGuide[®], Sap-Script[®], FreeLite[®], inMod[®] sono marchi registrati di Softing s.r.l.

Presentazione di ElWood

ElWood è un ambiente di Nòlian All In One dedicato alla verifica degli elementi monodimensionali in legno (travi e colonne) (delle unioni realizzate con collegamenti acciaio-legno. ElWood opera, a valle di una analisi statica o dinamica lineare, second il metodo degli stati limite in accordo alle prescrizioni dettate dal DM 2018, dalle Istruzioni CNR-DT 206/2007.

La modellazione e l'analisi delle strutture in legno, deve essere eseguita nell'ambiente Nòlian, nelle stesse modalità previste per tutti gli altri tipi di strutture, assegnando gli opportuni valori dei parametri meccanici che caratterizzano il materiale, e seguendo le procedure di realizzazione del modello e di esecuzione della analisi, implementate nell'architettura di Nòlian, e per le quali si rimanda alla rispettiva guida.

Dopo l'esecuzione dell'analisi, si passa all'ambiente ElWood per procedere con la verifica degli elementi e per definire la costituzione delle unioni in modo da poter eseguire la verifica dei collegamenti.

In ElWood sono trattati gli elementi monodimensionali in legno, ed i collegamenti metallici.

Le unioni sono componibili dall'utente tramite assegnazione diretta degli accessori (piatti, squadrette, piastre, bicchieri etc.), e tramite la definizione dei mezzi di unione (bulloni, chiodi, viti, spinotti).

Per le membrature strutturali le verifiche eseguite dal programma sono le seguenti.

- Verifica a trazione (punto 4.4.8.1.1 NTC 2018)
- Verifica a compressione (punto 4.4.8.1.3 NTC 2018)
- Verifica a flessione (punto 4.4.8.1.6 NTC 2018)
- Verifica a tensoflessione (punto 4.4.8.1.7 NTC 2018)
- Verifica a pressoflessione (punto 4.4.8.1.8 NTC 2018)
- Verifica a taglio (punto 4.4.8.1.9 NTC 2018)

- Verifica a torsione (punto 4.4.8.1.10 NTC 2018)
- Verifica a taglio e torsione (punto 4.4.8.1.11 NTC 2018)
- Verifiche di instabilità flessionale (punto 4.4.8.2.1 delle NTC 2018 e 6.5.2.1 delle Istruzioni CNR-DT 206/2007)
- Verifiche di instabilità assiale (punto 4.4.8.2.2 delle NTC 2018 e 6.5.2.2 delle Istruzioni CNR-DT 206/2007)
- Verifiche di instabilità pressoflessione (punto 6.5.2.3 delle Istruzioni CNR-DT 206/2007)
- Deformabilità delle travi (punto 4.4.7 delle NTC 2018 e 6.4 delle Istruzioni CNR-DT 206/2007)
- Spostamento limite orizzontale (Riguardo tale verifica la norma non fornisce istruzioni, pertanto è stata implementati nel programma la medesima verifica richiesta per le strutture in acciaio, ed è facoltà dell'utente decidere se farla eseguire o trascurarla)

Se si dispone anche dell'ambiente Quarmon è possibile eseguire in ElWood le verifiche di resistenza in condizione di incendic Vengono eseguite le verifiche di resistenza delle membrature in condizioni di incendio secondo Eurocodice 5 - UNI EN 1995-1-2:2005.

Gli strumenti di ElWood

I comandi disponibili in ElWood sono i seguenti.

Nel menu Funzioni sono presenti i comandi:

- Laboratorio collegamenti
- Copia accessori
- Incolla accessori

I comandi attivabili dalla palette sono i seguenti, (elencati come mostrato in figura partendo da sinistra):

Gruppo icone 2

- Assegnazione accessori
- Numerazione giunto
- Rappresenta giunto
- Esporta giunto

Gruppo icone 3

- Verifiche membrature
- Rappresentazione verifica membrature
- Verifica SLD

Gruppo icone 4

• Verifica giunto

Rappresentazione verifica giunto

Gruppo icone 5

- Assegna conduttività dei lati
- Verifica membratura per incendio
- Rappresentazione verifica membrature per incendio

Gruppo icone 6

- Visualizza numerazione elemento
- Visualizza denominazione elemento
- Rappresentazione solida dell'elemento

Oltre ai comandi sopra elencati, sono presenti anche i comandi comuni agli altri ambienti, e sono il menu Carichi ed "Esecutivi". Inoltre i comandi attivabili dalle altre icone della palette: Stampa dei tabulati, Definizione del piano di lavoro, Zoom. I comandi del primo gruppo di icone sono anch'essi comuni agli latri ambienti e sono:

- Dati elemento
- Sezione elemento
- Sforzi elemento
- Raggruppa elementi
- Sciogli gruppo elementi
- >Diagramma sforzi

Per tali comandi si rimanda alle guide degli altri ambienti.

Caratteristiche dei materiali

Cliccando due volte sulle icone della palette Assegna accessori o Verifica membrature si accede val dialogo Assegnazioni default costituito dalle seguenti pagine:

- Caratteristiche del legno
- Caratteristiche acciaio
- Mezzi di unione
- Interassi e distanze
- Resistenza al fuoco

Caratteristiche del legno

ipologia Massiccio ~		Unità di lunghez	za cm
Caratteristiche di resistenza		Unità di forza	kg
Flessione fm,k	254.92905	Unità di pression	ne kg:cmq
Trazione parallela ft,0,k	152.95743		
Trazione perpendicolare ft,90,k	4.0788649	Classe di servizio	3
Compressione parallela fc,0,k	214.14040		
Compressione perpendicolare fc,90,k	26.512622	Cofficiente sicurezza parziale gm	1.5000000
Taglio fv,k	40.788649	Cofficiente sicurezza parziale unio	ni 1.5000000
Mudulo elastico medio Emean	120326.51	Coefficiente di deformabilità kdef	
Mudulo elastico caratteristico Eo,o5	80557.581	2.0000000 Reir	mposta default
Modulo elastico perp. medio E90mean	3976.8932		
Modulo tangenziale caratteristico Go,05	7545.9000	Coefficiente di resistenza kmod	
Massa volumica caratteristica rk (kg/mc)	375.00000	Classe di durata permanente	0.500000
Imposta secondo UNI 11035-229 per essenza	Abete C24 V	Classe di durata lunga	0.550000
		Classe di durata media	0.650000
		Classe di durata breve	0.700000
		Classe di durata istantanea	0.900000
		Peir	moosta default

E' possibile assegnare le seguenti caratteristiche:

Tipologia del legno tra Massiccio e Lamellare incollato.

Classe di servizio secondo il punto 4.4.5 delle NTC 2018.

Essenza secondo le indicazioni date dalla UNI 11035-2/2010 per legno massiccio e dalla UNI EN 1194/2000 per legno lamellare incollato.

Nelle figure che seguono, i valori previsti dalla normativa che vengono automaticamente assegnati nel dialogo.

PROSPETTO 5 DELLA NORMA UNI 11035-2/2010

Proprietà		A	bete/Ita	lia	Pino	laricio/	Italia	Lari	ce/Nord	Italia	Dougla	sia/Italia	Altre	conifere	e/Italia	Castagno/Italia	Querce caducifoglie/Italia	Pioppo e Ontano/Italia	Altre latifoglie/Italia
Corrispondenza con le Classi di re della UNI EN 338	sistenza		C24	C18	C40	C22	C14		C22	C18	C35	C22				D24			
Categorie resistenti		S1	S2	S3	S1	S2	S3	S 1	S2	S 3	S1	S2/S3	S1	S2	S3	S	S	S	S
Flessione (5-percentile), N/mm ²	f _{m,k}		25	18	40	22	15		23	18	35	22	33	26	22	28	42	26	27
Trazione parallela alla fibratura (5-percentile), N/mm ²	f _{t,0,k}		15	11	24	13	9		14	11	21	13	20	16	13	17	25	16	16
Trazione perpendicolare alla fibratura (5-percentile), N/mm ²	f _{t,90,k}		0,4	0,4	0,4	0,4	0,4		0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,6	0,6	0,6	0,6
Compressione parallela alla fibratura (5-percentile), N/mm ²	<i>f</i> _{c,0,k}		21	18	26	20	17		20	18	25	20	24	22	20	22	27	22	22
Compressione perpendicolare alla fibratura (5-percentile), N/mm ²	f _{c,90,k}		2,6	2,6	3,2	3,0	3,0		3,6	3,6	3,2	2,9	3,7	3,7	3,7	7,3	11	6,3	7,7
Taglio (5-percentile), N/mm ²	f _{v,k}		4,0	3,4	4,0	3,8	3,0		3,8	3,4	4,0	3,8	4,0	4,0	3,8	4,0	4,0	2,7	4,0
Modulo di elasticità parallelo alla fibratura (medio), kN/mm ²	E _{0,mean}		11,8	10,5	15	12	11		12,5	11,5	15,8	13	12,3	11,4	10,5	12,5	12,0	8,0	11,5
Modulo di elasticità parallelo alla fibratura (5-percentile), kN/mm ²	E _{0,05}		7,9	7,0	10	8,0	7,4		8,4	7,7	11	8,7	8,2	7,6	7,0	10,5	10,1	6,7	9,7
Modulo di elasticità perpendicolare alla fibratura (medio), kN/mm ²	E _{90,mean}		0,39	0,35	0,50	0,40	0,37		0,42	0,38	0,53	0,43	0,41	0,38	0,35	0,83	0,80	0,53	0,77
Modulo di taglio (medio), kN/mm ²	G _{mean}		0,74	0,66	0,94	0,75	0,69		0,78	0,72	0,99	0,81	0,77	0,71	0,66	0,78	0,75	0,50	0,72
Massa volumica (5-percentile), kg/m ³	Pk		375	375	455	425	430		510	520	450	415	530	530	530	485	760	420	515
Massa volumica (media), kg/m ³	$ ho_{\rm mean}$		450	450	550	520	520		610	620	540	500	575	575	575	580	825	460	560

PROSPETTO 1 DELLA NORMA UNI EN 1194/2000

PROSPETTO 2 DELLA NORMA UNI EN 1194/2000

Valori caratteristici per le proprietà di resistenza e di rigidezza in N/mm² e di massa volumica in kg/m³ (per legno lamellare incollato omogeneo)

Classe di resistenza del legno lame	GL 24h	GL 28h	GL 32h	GL 36h	
Resistenza a flessione	f _{m,g,k}	24	28	32	36
Resistenza a trazione	f _{t,0,g,k}	16,5	19,5	22,5	26
	f _{t,90,g,k}	0,4	0,45	0,5	0,6
Resistenza a compressione	f _{c,0,g,k}	24	26,5	29	31
	f _{c,90,g,k}	2,7	3,0	3,3	3,6
Resistenza a taglio	f _{v,g,k}	2,7	3,2	3,8	4,3
Modulo di elasticità	E _{0,g,mean}	11 600	12 600	13 700	14 700
	E _{0,g,05}	9 400	10 200	11 100	11 900
	E _{90,g,mean}	390	420	460	490
Modulo di taglio	$G_{g,mean}$	720	780	850	910
Massa volumica	$\rho_{a,k}$	380	410	430	450

Valori caratteristici per le proprietà di resistenza e di rigidezza in N/mm² e di massa volumica in kg/m³ (per legno lamellare incollato combinato)

Classe di resistenza del legno lamellare inc	GL 24c	GL 28c	GL 32c	GL 36c	
Resistenza a flessione	f _{m,g,k}	24	28	32	36
Resistenza a trazione	f _{t,0,g,k}	14	16,5	19,5	22,5
	f _{t,90,g,k}	0,35	0,4	0,45	0,5
Resistenza a compressione	f _{c,0,g,k}	21	24	26,5	29
	f _{c,90,g,k}	2,4	2,7	3,0	3,3
Resistenza a taglio	f _{v.g.k}	2,2	2,7	3,2	3,8
Modulo di elasticità	E _{0,g,mean}	11 600	12 600	13 700	14 700
	E _{0,9,05}	9 400	10 200	11 100	11 900
	E _{90,g,mean}	320	390	420	460
Modulo di taglio	$G_{g,mean}$	590	720	780	850
Massa volumica	$\rho_{g,k}$	350	380	410	430

Una volta selezionate Tipologia, Classe di servizio ed Essenza, tutti i parametri meccanici del materiale vengono aggiornati automaticamente ed allo stesso modo vengono aggiornati tutti i Coefficienti di sicurezza.

I coefficienti mostrati sono:

- Coefficiente di sicurezza parziale gm definito al punto 4.4.6 delle NTC 2018
- Coefficiente di sicurezza parziale unioni definito al punto 4.4.6 delle NTC 2018
- Coefficiente di deformabilità kdef definito al punto 4.4.7 delle NTC 2018
- Coefficiente di resistenza kmod definito al punti 4.4.6 delle NTC 2018 (modificando la voce nel menu è possibile vedere il valore per la classe di durata del carico)

Ogni valore può essere modificato manualmente dall'utente, inoltre possono essere modificate le unità di misura con cui vengono mostrati i parametri per agevolare un eventuale controlli dei dati.

Caratteristiche dell'acciaio

Nella pagina Caratteristiche acciaio vengono mostrati i parametri meccanici dell'acciaio che costituisce le parti metalliche delle unioni, quali ad esempio piatti, piastre, squadrette, bicchieri. I parametri mostrati sono:

- La resistenza a snervamento fyk
- La resistenza a rottura ftk
- Coefficiente di sicurezza parziale gm definito al punto 4.2.8.1.1 delle NTC 2018

Caratteristiche legno Caratteristich	acciaio Mezzi di unione Interassi e distanze Resistenza fuoco	
Classe acciaio Classe acciaio Resistenza snervamento fyk Resistenza rottura ftk Coefficiente sic. parziale gm	acciaio Mezzi di unione Interassi e distanze Resistenza fuoco 275 - - - - 2804.22 - - - - 4384.78 - - - - 1.2500000 235 - - - 2804.22 - - - - 4384.78 - - - - 1.2500000 235 - - - 235 275 355 - - 450 460 - - - - 460 Utente - - - -	
	•	

Dall'apposito menu si può scegliere la classe di acciaio desiderata, oppure inserire dei valori Utente assegnandoli direttamente nelle celle dei valori.

Caratteristiche dei mezzi di unione

Nella pagina Mezzi di unione vengono impostati i parametri meccanici dell'acciaio che costituisce gli elementi di unione ed altri parametri necessari per le verifiche dei collegamenti:

segnazioni default	
Caratteristiche legno Caratteristiche acciaio	Mezzi di unione Interassi e distanze Resistenza fuoco
Tipo mezzo di unione	Chiodo cilindrico 🗸 🗹 Usa come unione standard
Diametro (mm)	10.0000
Resistenza rottura	8157.73 Imposta per classe mezzo di unione 4.6 ~
Sicurezza parziale	1.25000
Percentuale estrazione (%)	100.000
Profondità inserimento (mm)	100.000
Tolleranza foratura (ø)	0.000000
Essenza	Conifere ~
Resistenza estrazione	0.000000 Assegnata Assegna resistenza bullone
Preforato	
	OK

Selezionare il Tipo mezzo di unione dal menu tra le seguenti possibilità:

- Chiodo cilindrico
- Chiodo scanalato
- Bullone
- Spinotto
- Vite

Spuntando il check-box Usa come default, il programma imposta il mezzo di unione scelto come elemento di default. Si possono quindi assegnare le seguenti caratteristiche del mezzo di unione.

• Diametro (espresso in mm)

- Classe dei mezzi di unione
- Resistenza a rottura dell'acciaio dei mezzi di unione
- Coefficiente di sicurezza parziale dei mezzi di unione
- Percentuale di estrazione: è la percentuale del termine di resistenza ad estrazione del mezzo di unione che viene considerata nel calcolo della resistenza dell'unione, secondo la teoria di Johansen. I valori di percentuale per i vari tip di unione sono riportati al punto 7.8.2.2 delle Istruzioni CNR-DT 206/2007
- Profondità di inserimento: è il parametro spessore dell'elemento in legno t1 e/o t2 definito al punto 7.8.2.3 Figura 7-l delle Istruzioni CNR-DT 206/2007
- Tolleranza foratura (espressa in rapporto al diametro): deve essere inserito il rapporto tra: (differenza di dimensione tra il diametro dell'elemento di unione e il foro di alloggio) diviso il diametro del mezzo di unione. Per chiodi, viti e spinotti generalmente tale valore è nullo, mentre per i bulloni dato che il foro è solitamente maggiorato di 1.0 mm deve essere inserito un valore di tolleranza pari a 1,0/diametro bullone
- Essenza: deve essere specificato se l'essenza è una Conifera, una Latifoglie o un LVL, tale informazione se come tipo c mezzo è stato assegnato il Bullone, è necessaria per il calcolo della resistenza a rifollamento dell'elemento di unione contro il legno in accordo al punto 7.8.5.1.2 della CNR_DT206_2007, mentre negli altri casi non sarà presa in considerazione
- Resistenza ad estrazione: è il parametro Fax,Rk definito al punto 7.8.2.2 delle Istruzioni CNR-DT 206/2007, dato che per le istruzioni di norma, e per l'ampia aleatorietà delle modalità di calcolo di tale parametro non è possibile implementarne il calcolo automatico, di default tale valore è considerato nulla, ma spuntando il check-box Assegnata è data facoltà di assegnare manualmente tale parametro, nel caso il mezzo di bulloni e tirafondi, quando questi sono efficacemente ancorati (o con resina chimica, o con rosette e dadi), è possibile anche assegnare una forza di estrazione pari alla forza di snervamento del mezzo, cliccando sul bottone Assegna resistenza bullone. In tal caso il programma assumerà una resistenza ad estrazione pari alla forza di snervamento dell'elemento calcolata con la relazione 4.2.62 del DM 18.
- Preforatura: spuntando il check-box saranno considerati fori preforati. Tale informazione se come tipo di mezzo è stato assegnato il Chiodo o la Vite, è necessaria per il calcolo della resistenza a rifollamento dell'elemento di unione contro il legno in accordo al punto 7.8.3.1.1 della CNR_DT206_2007, mentre negli altri casi non sarà presa in considerazione

NOTA: I Parametri Tipo del mezzo di unione, Diametro, Profondità di inserimento, sono richiesti in questo dialogo come assegnazioni di default, ma vengono anche riportati nel dialogo specifico degli Accessori delle unioni che l'utente assegna ai vari nodi del modello, pertanto l'assegnazione che viene fatta di default, può poi essere modificata all'interno del dialogo della specifica unione (che è illustrato più avanti), in modo da poter rispondere a svariate esigenze.

Interassi e distanze

Nella pagina Interassi e distanze vengono impostate le dimensioni geometriche con le quali vengono create le unioni di default, tale dialogo risulta inoltre un utile strumento per l'utente ai fini di una corretta progettazione dei collegamenti della struttura, e come quadro di controllo della geometria di generazione delle unioni nel modello.

I dati richiesti sono i seguenti. Tipo mezzo di unione

la scelta del tipo di unione è valida anche per pagina Mezzi di Unione in modo che se viene cambiato su una pagina, automaticamente viene aggiornato nell'altra.

Direzione sollecitazione: angolo in gradi dell'inclinazione delle forze rispetto alla fibratura del legno, definire questo parametro è necessario per poter calcolare correttamente i minimi geometrici delle distanze dei fori.

i minimi geometrici delle distanze vengono calcolati in riferimento ai seguenti punti di normativa:

- Chiodo cilindrico/Chiodo scanalato, punto 7.8.3.1.2 delle Istruzioni CNR-DT 206/2007
- Bulloni, punto 7.8.5.1.1 delle Istruzioni CNR-DT 206/2007
- Spinotti, punto 7.8.6 delle Istruzioni CNR-DT 206/2007
- Viti, punto 7.8.7.2 delle Istruzioni CNR-DT 206/2007
- Spessore lamiera (espresso in mm): è lo spessore dei piatti in acciaio impiegati nell'unione, tale parametro è utilizzato per il calcolo dei minimi geometrici delle distanze nelle unioni metalliche secondo le prescrizioni del punto 4.2.8.1.1 delle NTC 2018.

			Thesistenza rubeo	
Tipo mezzo di unione Chiodo	cilindrico 🗸 🗸	Di	rezione sollecitazione	e (°) 0.000000
Diametro (mm) 10.0000		Sp	pessore lamiera (mm)	5.00000
Dimensioni in mm		Limiti di norr	mativa in diametri del	mezzo di unione
		Legno Min.	Acciaio Min.	Acciaio Max.
Interasse parallelo alla fibra (a1)	84.0000	8.40000	2.20000	9 7.00000
Interasse ortogonale alla fibra (a2)	35.0000	3.50000	2.40000	7.00000
Distanza dall'estremità sollecitata (a	3f) 150.000	15.0000		
Distanza dall'estremità scarica (a3c) 100.000	10.0000		
Distanza dal bordo sollecitato (a4f)	50.0000	5.00000		
Distanza dal bordo scarico (a4c)	50.0000	5.00000		
Distanza dal bordo della piastra (e1	=e2) 12.0000		1.20000	6.00000
Assegna dimensioni secondo CN	R-DT 206/2007		a3f a1	a3c
		*		
		0	+	•
		atca		e2
		a4c		e1

Una volta impostati tali parametri, cliccando sul bottone CNR-DT 206/2007 vengono automaticamente calcolati e sostituiti nei vari campi i valori dei minimi geometrici espressi in modo adimensionale riferito al diametro del mezzo di unione. Le campi dei valori sono editabili in modo che l'utente possa modificare i valori manualmente aumentandoli a seconda delle esigenze.

La nomenclatura utilizzata (sia nella definizione che nei simboli) delle distanze è in accordo con le istruzioni CNR-DT 206/2007, e nella parte in basso a destra del dialogo è riportata un'immagine di riferimento che mostra l'effettivo significato di ogni distanza.

Nella parte a destra della pagina, in linea con i vari parametri, sono riportati i corrispondenti valori dei minimi di norma

sempre espressi adimensionalmente rispetto al diametro. La prima colonna riporta le dimensioni minime in riferimento agli elementi lignei, quindi in accordo con la CNR-DT 206/2007, mentre le altre due colonne riportano le dimensioni minime e massime in riferimento ai piatti metallici che compongono l'unione, quindi in accordo alle NTC 2018.

Se l'utente esegue una modifica manuale delle distanze calcolate dal programma, e queste non siano in accordo con uno o più prescrizioni della norma, appare un simbolo di avviso accanto al valore che non viene rispettato, in modo da darne avvisc all'utente:

Una volta impostati correttamente i dati di progetto, in tutte le pagine della finestra di dialogo, è possibile procedere direttamente con la verifica delle membrature oppure con l'assegnazione degli accessori (bulloni, chiodi, piastre, ecc), che compongono i collegamenti.

Assegnazione accessori

Attivare questa funzione dalla seconda riga delle icone gerarchiche della palette, e cliccare un nodo del modello, al fine di poter assegnare gli accessori del collegamento.

Nel dialogo viene mostrata la vista assonometrica solida con facce in trasparenza, di tutte le aste convergenti nel nodo del modello, precedentemente selezionato.

E' possibile modificare l'ingrandimento ed il punto di viosta di qiesta rappresentazione con lo scroll ed il tasto destro del mouse.

Nella vista assonometrica, uno dei profili viene rappresentato in rosso, questo vuol dire che tale elemento è quello corrente, quindi ogni accessorio che l'utente intende assegnare, sarà attaccato a tale elemento, (nell'immagine sopra si riconosce la colonna come elemento corrente).

Per modificare l'elemento corrente si deve andare a cliccare il bottone Cambia elemento che uno per volta, a rotazione, renderà correnti tutti i profili componenti l'unione. Bisogna cliccare fino a rendere corrente il profilo a cui si desidera assegnare Accessori, e poi si dovrà passare alle assegnazioni nella parte destra della finestra.

In questa sezione si deve scegliere l'accessorio corrente, selezionandolo dall'apposito menu o tramite i tasti a freccia. L'accessorio corrente viene mostrato nella finestra di anteprima, in modo da facilitare la scelta Ad ogni membratura concorrente nel nodo possono essere assegnati più accessori in modo da comporre la voluta conformazione del collegamento.

Gli accessori disponibili in ElWood sono elencati nel seguito con la descrizione del loro utilizzo più idoneo, ed infine sono mostrati nell'immagine riepilogativa

Squadrette semplici

Squadretta sinistra-destra: classico elemento metallico adatto per collegare travi ad altri elementi trave o colonna, idoneo per unioni che hanno un funzionamento di cerniera.

Squadretta inferiore: classico elemento metallico adatto per collegare travi ad altri elementi trave o colonna, idoneo per unioni che hanno un funzionamento di cerniera.

Squadretta superiore: utilizzata in accoppiata alla Squadretta inferiore può essere utile per realizzare vincoli che abbiano un funzionamento di incastro.

Squadrette rinforzate

Questi tipi di squadrette rinforzate hanno il medesimo funzionamento delle squadrette semplici, ma essendo le alette rinforzate con una piastra laterale, tali elementi offrono una resistenza dei piatti maggiore, adatta per collegare elementi soggetti a sollecitazioni maggiori.

Piastra

Piastra (sinistra, destra, superiore, inferiore): tali elementi possono essere utilizzati per realizzare un giunto di continuità di un elemento trave o colonna, oppure possono essere utilizzati singolarmente o in accoppiata insieme ad altri tipi di accessor per realizzare unioni variegate di vari elementi quali ad esempio controventi, o nodi inferiori dei monaci di capriate.

Piastra pluriconnessione sinistra: tali elementi possono essere utilizzati per realizzare un giunto di controventi, o nodi superiori dei monaci di capriate.

Unione centrale

Unione centrale a T e a 2T: classici elementi metallici adatto per attaccare travi ad altri elementi trave o colonna, in cui i piati devono essere mantenuti coperti, idoneo per unioni che hanno un funzionamento di cerniera.

Accessori di base

Fondazione Bicchiere: tali elementi sono gli accessori che realizzano un nodo di base delle colonne, il primo ha un funzionamento più simile a quello di cerniera, il secondo invece ha un funzionamento più simile a quello di incastro.

A seconda del tipo di asta che si imposta come corrente, gli Accessori mostrati nel menù a tendina, saranno solo quelli

compatibili con l'elemento a cui verranno assegnati, in tal modo un accessorio "Bicchiere" non sarà disponibile nei casi in cui sia stato selezionato un nodo in elevazione, e o l'asta corrente sia una trave e non una colonna

Una volta che l'utente ha selezionato l'accessorio che vuole assegnare, deve specificare gli altri dati quali:

Tipo mezzo di unione

Diametro mezzo di unione (espresso in mm)

Spessore lamiera (espresso in mm)

Lunghezza di infissione t2 (espressa in mm): è il parametro spessore dell'elemento in legno t1 e t2 definito al punto 7.8.2.3

Figura 7-8 delle Istruzioni CNR-DT 206/2007

Opzioni: nel caso si voglia assegnare una Piastra pluriconnessione, in tale menù a tendina è possibile scegliere se la piastra debba essere rifilata o meno, la differenza tra le due opzioni è che nel caso di rifilatura la piastra segue il profilo delle aste:

Connettori: l'indicazione del numero dei connettori viene inserita nelle celle in basso a destra secondo il criterio mostrato nell'immagine.

Connessione fissa:spuntando tale check-box il programma andrà a considerare l'accessorio come se fosse connesso ad un vincolo esterno, pertanto non fornirà verifiche degli elementi sul piano di connessione dell'accessorio agli elementi che non sono quello a cui l'accessorio è assegnato.

Una volta assegnato l'accessorio è possibile passare alla tendina Geometria:

Nella pagina Geometria viene mostrato il particolare dell'accessorio assegnato, visualizzando le proiezioni ortogonali della sua geometria, con l'indicazione delle dimensioni e delle distanze.

Alla prima assegnazione, gli accessori vengono generati sulla base dei minimi geometrici calcolati in base alle opzioni impostate nella pagina Interassi e distanze del dialogo delle Assegnazioni di default:

ratteristiche legno Caratteristiche acciaio	Mezzi di union	e Interassi e distanze		
Tipo mezzo di unione	Bullone	•		
Direzione sollecitazione (*)	0.000000			
Spessore lamiera (mm)	10	Distanze in c	liametri del mezzo c	li unione
		Legno Min.	Acciaio Min.	Acciaio Max.
Interasse parallelo alla fibra (a1)	7.00000	7.00000	2.20000	11.6667
Interasse ortogonale alla fibra (a2)	4.00000	4.00000	2.40000	11.6667
Distanza dall'estremità sollecitata (a3f)	7.00000	7.00000		
Distanza dall'estremità scarica (a3c)	4.00000	4.00000		
Distanza dal bordo sollecitato (a4f)	3.00000	3.00000		
Distanza dal bordo scarico (a4c)	3.00000	3.00000		
Distanza dal bordo della piastra (e1=e2)	1.20000		1.20000	3.33333
CNR-DT 206/2007		adc a2 adf	a1 a3	e2

Successivamente alla generazione, nel dialogo Geometria mostrato sopra, è possibile per l'utente modificare la geometria per alcuni tipi di accessori, assegnando la dimensione del parametro che si vuole modificare, direttamente nelle celle in alto destra, (non è possibile operare modifiche dirette sulla geometria sull'accessorio Piastra pluriconnessionee Bicchiere.

Nella definizione della unione è possibile assegnare più accessori allo stesso elemento, in modo da realizzare la conformazione voluta del nodo da verificare:

Operazioni accessorie sui giunti

Numerazione del giunto

Tale comando permette di selezionare un nodo della struttura, e di modificarne il nome.

Di default viene assegnato come nome l'indice del nodo del modello, ma è possibile modificarlo assegnando un nome voluto.Il nuovo nome assegnato sarà riportato nell'esecutivo del nodo.

Rappresentazione del giunto

Il comando rappresenta giunto permette di cliccare sui nodi della struttura ed ottenerne la rappresentazione solida direttamente sul modello generale.

Esportazione disegno del giunto

Selezionando questo comando è possibile esportare l'esecutivo di un nodo. La procedura da seguire è la seguente:

Verifiche membrature

Il comando Verifiche membrature, attivato dalla palette, permette di accedere al dialogo di controllo dei risultati delle verifiche delle aste in legno.

Una volta selezionato il comando, cliccando sull'elemento che si desidera indagare viene aperta la seguente finestra di dialogo:

Sommario verifiche Verifica	presso-tenso-flessionale Verifica	a taglio Verifica a torsione 🚹
	Fattore di sfruttamento	Esito
Verifica flessionale	0.430594	VERIFICATO
Verifica instabilità	0.431251	VERIFICATO
Verifica a taglio	0.074349	VERIFICATO
Verifica a torsione	0.096381	VERIFICATO
Verifica a taglio-torsione	0.101908	VERIFICATO
Verifica deformabilità	0.073017	VERIFICATO
Verifica generale	0.431251	VERIFICATO

All'apertura del dialogo si presenta la pagina Sommario verifiche dalla quale è possibile eseguire un controllo generale sullo stato delle varie verifiche eseguite sull'elemento; viene riportato per ogni verifica il fattore di sfruttamento ed il relativo esito. Alla riga Verifica generale è riportato il fattore di sfruttamento massimo tra tutte le verifiche.

Dalle tendine in alto è possibile cambiare pagina del dialogo, ed eseguire un controllo più accurato dei risultati.

44511 Trach	ane varalleie alla fibratura	
Deve essere sode	Esfatta la semente condizione:	
	$\sigma_{10,d} \leq f_{10,d}$	(4.4.2)
dove:		
ct _{10.4} è la tensio	one di calcolo a trazione parallela alla fibratura calcolata sulla sezioni	e netta;
f _{ton} é la corri- della seui	spondente resistenza di calcolo, determinata tenendo conto anche de one traversale mediante il coefficiente $k_{\rm bc}$ come definito al § 11.7.1.	lle dimension 1.
4.4.8.1.3 Comp	pressione parallela alla fibratura	
Deve essere sode	disfatta la seguente condizione:	
	$\alpha_{ens} \leq f_{ens}$	(4.4.3)
dove: σ_c f_{c_c}	3.8 è la tensione di calcolo a compressione parallela alla file 8,4 è la corrispondente resistenza di calcolo.	nilum;
4.4.8.1.6 Floor	one	
Devono essere so	ddisfatte entrambe le condizioni seguenti:	
	$\frac{\sigma_{met}}{f_{met}} + k_m \frac{\sigma_{met}}{f_{met}} \leq 1$	(4.4.5a)
	$k_m \frac{\sigma_{mod}}{f_{mod}} + \frac{\sigma_{mad}}{f_{mod}} \leq 1$	(4.4.Sb)
dove:		
$G_{m,r,d}\in G_{m,r,d}$	 sono le tensioni di calcolo massime per flessione rispettivament e xy detenninate assumendo una distubuzione elastico lineare sulla sazione (vadi Fig. 4.4.1); 	e nei piani az delle tensioni
$f_{m,\gamma,d} \circ f_{m,\gamma,d}$	sono le corrispondenti resistenze di calcolo a flessione, determi conto anche delle dimensioni della sezione trasversale coefficiente la, come definito al § 11.7.1.1.	nata tenendo mediante il
I valori da adottar delle tensioni e del	e per il coefficiente k_{∞} , che tiene conto convenzionalmente della ri lla disomogeneità del materiale nella sezione trasversale, sono	distribuzione
$-k_m = 0.7$ [per sezioni trasversali rettangolari;	
$-\mathbf{k}_{\rm ex} = 1.0~\mathrm{g}$	per altre sezioni trasversali.	
4.4.8.1.7 Tenset	lesilane	
Nel caso di sforza assi principali dell	o normale di trazione secompagnoto da sollecitazioni di flevdorse a l'elemento stratturale, devono essere soddisfatte entrambe le segnenti	ttorno ai due condizioni:
	$\frac{\sigma_{obd}}{f_{obd}} + \frac{\sigma_{mad}}{f_{mad}} + \mathbf{k}_m \frac{\sigma_{mad}}{f_{mad}} \leq 1,$	(4.4.6a)
	$\frac{\sigma_{\max}}{f_{\rm cod}} + k_{\rm m} \frac{\sigma_{\max d}}{f_{\rm mod}} + \frac{\sigma_{\max d}}{f_{\max d}} \leq 1. \label{eq:constant}$	(4.4.6b)
4.4.8.1.N Presso	Ression	
Nel caso di sforzo due assi principa condizioni:	normale di compressione accompagnato da sollecitazioni di flessio ili dell'elemento strutturale, devono essere soddisforte entrambe	ne attorno ai le segnenti
	$\left(\frac{\sigma_{\rm sold}}{f_{\rm sold}}\right)^2 + \frac{\sigma_{\rm maxi}}{f_{\rm maxi}} + k_m \frac{\sigma_{\rm maxi}}{f_{\rm maxi}} \leq 1 \ . \label{eq:solution}$	(4.4.7a)
	$\left(\frac{\sigma_{n,0,0}}{f_{n,0,0}}\right)^2 + k_m \frac{\sigma_{m,0,0}}{f_{m,0,0}} + \frac{\sigma_{m,0,0}}{f_{m,0,0}} \leq 1$	(4.4.7h)

Per l'esecuzione delle verifiche, le tensioni di progetto del materiale vengono calcolate in accordo alle NTC 2018 con la relazione generale (4.4.1) al punto 4.4.6 del DM1:

Xd = (kmod x Xk)/gM

a tale valore vengono applicati poi eventuali altri coefficienti di sicurezza specifici previsti dalle varie verifiche.

Verifica presso-tenso flessionale

In questo dialogo vengono mostrati i risultati relativi alle verifiche secondo i punti 4.4.8.1.1, 4.4.8.1.3, 4.4.8.1.6, 4.4.8.1.7, 4.4.8.1.8 delle NTC 2018.

rifiche membratura				<u></u> ୧ 🗙
Sommario verifiche Verifica	presso-tenso-fle	ssionale Verifi	ca a taglio Ve	rifica a torsione 🔤
Ascissa 0.000000	Calcola			Sezione critica
Combinazione critica	13			
Forza assiale	15.610467			
Torsione	411.73321			
Momento y	4.7571780			
Momento z	121961.65			
Taglio y	-539.10752			
Taglio z	-0.01160173		Tensione di calcolo	Resistenza di confronto
Fattore riduttivo kmod	0.800000	Assiale	0.031221	114.208
Fattore khy	1.00000	Flessione y	0.002854	135.962
Fattore khz	1.00000	Flessione z	58.5416	135.962
Fattore sicurezza parziale	1.50000	Fattore di sfru	ttamento	0.430594
		Esito della	a verifica VER	IFICATO
				ОК

I dati mostrati sonoi seguenti.

Combinazione critica

La combinazione che per la verifica in esame determina il massimo fattore di sfruttamento. Sotto tale dato sono elencati i valori delle caratteristiche di sollecitazione corrispondenti alla Combinazione critica ed alla ascissa corrente;

Ascissa

Viene mostrata l'ascissa cui si riferiscono sia i valori di sollecitazione visualizzati, sia le relative tensioni di calcolo. Nella cella di ascissa, l'utente può inserire un valore differente per leggere i valori lungo tutto lo sviluppo dell'elemento in esame, una volta inserito il valore desiderato basta cliccare il bottone Calcola ed i valori sarannò aggiornati alla nuova ascissa. Cliccando il bottone Sezione critica, il valore di ascissa ed i dati restituiti, vengono aggiornati riportando i valori relativi alla sezione ove si registra il massimo sfruttamento. Se il valore di ascissa non vine modificato dall'utente, di default vengono sempre mostrati i valori relativi alla sezione critica.

Fattore riduttivo kmod

Fattore kmod definito al punto 4.4.6 (Tab.4.4.IV) delle NTC 2018 corrispondente alla Combinazione critica;

Fattore khy

coefficiente che tiene conto delle dimensioni della sezione trasversale relativamente all'asse locale Y, definito al punto 11.7.1.1 delle NTC 2018;

Fattore khz

coefficiente che tiene conto delle dimensioni della sezione trasversale relativamente all'asse locale Z, definito al punto 11.7.1.1 delle NTC 2018;

LEGNO LAMELLARE

$$k_{h} = \min \left\{ \left(\frac{150}{h} \right)^{0,2}; 1,3 \right\}$$

$$k_{\rm h} = \min\left\{ \left(\frac{600}{h}\right)^{0,1}; 1,1 \right\}$$

Si noti che i fattori kh vengono calcolati tenendo conto se la tipologia di legno impostata nella finestra di dialogo Assegnazioni di default è legno Massiccio o Lamellare, dato che tale fattore amplifica la resistenza del materiale, viene calcolato per entrambe le direzioni, e poi viene applicato il valore minore. Se le dimensioni della sezione sono tali per cui il fattore kh sia minore di 1.0, automaticamente il programma assume il valore unitario; *Fattore di sicurezza parziale*

è il fattore di sicurezza gamma M definito al punto 4.4.6 (Tab 4.4.III) delle NTC 2018;

Tensione di calcolo e Resistenza di confronto Vengono mostrati i vari valori di tensione agente e resistente previsti dalle verifiche di norma per le azioni assiali e flessionali secondo i due assi.

Fattore di sfruttamento

tra tutte le verifiche eseguite, viene mostrato il massimo valore di sfruttamento dell'elemento.

Si noti che il fattore km previsto nelle verifiche a tensoflessione e pressoflessione, non viene mostrato ma viene applicato automaticamente dal programma, e come da norma è assunto pari a 0.7 per sezioni rettangolari, e pari a 1.0 in tutti gli altri casi.

Tutti i risultati sono riportati nell'unità di misura correnti.

Nella descrizione delle altre verifiche del dialogo, il significato dei risultati già descritto in questo paragrafo non sarà ripetuto

Verifica a taglio

In questo dialogo vengono mostrati i risultati relativi alla verifica secondo il punto 4.4.8.1.9 delle NTC 2018.

4.4.8.1.9 Taglio

Deve essere soddisfatta la condizione:

$$\tau_{d} \leq f_{v,d}$$
 (4.4.8)

dove: τ_d è la tensione massima tangenziale di calcolo, valutata secondo la teoria di Jourawski;

f_{v,d} è la corrispondente resistenza di calcolo a taglio.

Verifiche membratura			8 <mark>x</mark>
Sommario verifiche Verifica	presso-tenso-flessionale	• Verifica a taglio Verifi	ca a torsione
Ascissa 0.000000	Calcola	5	Sezione critica
Combinazione critica	13		
Forza assiale	15.610467		
Torsione	411.73321		
Momento y	4.7571780		
Momento z	121961.65		
Taglio y	-539.10752		
Taglio z	-0.01160173		
Fattore riduttivo kmod	0.800000	Tensione di calcolo	1.61725
Fattore sicurezza parziale	1.50000	Resistenza di confronto	21.7539
		Fattore di sfruttamento	0.074343
		Esito della verifica VER	IFICATO
			ОК

Per il significato dei risultati restituiti, descritti precedentemente si rimanda al paragrafo della Verifica presso-tenso-flessionale.

Verifica a torsione

In questo dialogo vengono mostrati i risultati relativi alla verifica secondo i punti 4.4.8.1.10 e 4.4.8.1.11 delle NTC 2018.

4.4.8.1.10 Tors	<i>ione</i> Idisfatta la cond	izione:				
		$\tau_{tor,d} \leq k_{sh} f_{v,d}$	(4.4.9)			
dove: Ttor,d	è la tensie	one massima tangenziale di calcolo per torsion	e;			
ka	è un coef	è un coefficiente che tiene conto della forma della sezione trasversale				
$f_{v,d}$	è la resist	enza di calcolo a taglio.				
Per il coefficien	te k _{sh} si possons	o assumere i valori:				
$k_{sh} = 1,2$:	per sezioni circolari piene;				
$k_{sh} - 1 +$	$0,15 \text{ h/b} \le 2$	per sezioni rettangolari piene, di lati b e h,	, b ≤ h;			
$k_{sh} = 1$		per altri tipi di sezione.				
4.4.8.1.11 Tagi Nel caso di ton formula di inter	<i>lio e Torsione</i> sione accompag azione:	mata da taglio si può eseguire una verifica c	ombinata adottando la			
		$\frac{\tau_{\mathrm{tran},t}}{\mathbf{k}_{\mathrm{ob}}\mathbf{f}_{\mathrm{o},d}} + \left(\frac{\tau_{\mathrm{o}}}{\mathbf{f}_{\mathrm{o},d}}\right)^2 \leq 1 \;, \label{eq:stars}$	(4.4.10)			

Verifiche membratura		ି <mark>×</mark>	
Sommario verifiche Verifica	presso-tenso-flessio	onale Verifica a taglio Verifica a torsione 💶	
Ascissa 0.000000	Calcola	Sezione critica	
Combinazione critica	10		
Forza assiale	-34.087315		
Torsione	5607.6148		
Momento y	26508.956		
Momento z	11840.796		
Taglio y	-98.596236		
Taglio z	-62.061997		
Tensione caratteristica	25.8328	Tensione di calcolo 2.48978	
Fattore riduttivo kmod	0.800000	Resistenza di confronto 25,8328	
Fattore ksh	1.18750	Fattore di sfruttamento 0.096381	
Fattore sicurezza parziale	1.50000	Sfrutt. Torsione e Taglio 0.10190746	
		Esito della verifica VERIFICATO	
		ОК)

Per il significato dei risultati già descritti precedentemente, si rimanda al paragrafo della Verifica presso-tenso-flessionale.

Fattore ksh fattore che tiene conto della effettiva forma della sezione

Fattore di sfruttamento viene mostrato il massimo valore di sfruttamento dell'elemento relativamente alla verifica della relazione 4.4.9 delle NTC 2018

Sfrutt. Torsione e Taglio viene mostrato il massimo valore di sfruttamento dell'elemento relativamente alla verifica della relazione 4.4.10 delle NTC 2018

Verifica instabilità

In questo dialogo vengono mostrati i risultati relativi alla verifica secondo i punti 4.4.8.2.1 – 4.4.8.2.2 delle NTC 2018, e secondo i punti 6.5.2.1, 6.5.2.2, 6.5.2.3 delle Istruzioni CNR-DT 206/2007.

Seque uno stralcio da NTC 2018.

4.4.8.2.1 Elementi inflessi (instabilità di trave)

Nel caso di flessione semplice, con momento flettente agente attorno all'asse forte y della sezione (cioè nel piano ortogonale a quello di possibile svergolamento), con riferimento alla tensione dovuta al massimo momento agente nel tratto di trave compreso tra due successivi ritegni torsionali, deve essere soddisfatta la relazione:

$$\frac{\sigma_{m,d}}{k_{crit,m} f_{m,d}} \leq 1, \qquad (4.4.11)$$

science di calcolo massima per flessione;

- k_{critm} coefficiente riduttivo di tensione critica per instabilità di trave, per tener conto della riduzione di resistenza dovuta allo sbandamento laterale;
- f_{m,d} resistenza di calcolo a flessione, determinata tenendo conto anche delle dimensioni della sezione trasversale mediante il coefficiente k_h.

Per travi aventi una deviazione laterale iniziale rispetto alla rettilineità nei limiti di accettabilità del prodotto, si possono assumere i seguenti valori del coefficiente di tensione critica k_{crit.m}

$$\mathbf{k}_{crit,m} = \begin{cases} 1 & \text{per } \lambda_{ral,m} \le 0,75 \\ 1,56 - 0,75\lambda_{ral,m} & \text{per } 0,75 < \lambda_{ral,m} \le 1,4 \\ 1/\lambda_{ral,m}^2 & \text{per } 1,4 < \lambda_{ral,m} \end{cases}$$
(4.4.12)

 $\lambda_{mlm} = \sqrt{f_{m,k} / \sigma_{m,crit}}$ snellezza relativa di trave;

fmk resistenza caratteristica a flessione;

σ_{m,crit} tensione critica per flessione calcolata secondo la teoria classica della stabilità, con i valori dei moduli elastici caratteristici (frattile 5%) E_{0.05}.

4.4.8.2.2 Elementi compressi (instabilità di colonna)

Nel caso di asta soggetta solo a sforzo normale deve essere soddisfatta la condizione:

$$\frac{\sigma_{co,d}}{k_{citc}f_{co,d}} \le 1$$
, (4.4.13)

- oc.o.d tensione di compressione di calcolo per sforzo normale;
- f_{c.o,d} resistenza di calcolo a compressione;
- k_{crit,c} coefficiente riduttivo di tensione critica per instabilità di colonna valutato per il piano in cui assume il valore minimo.

Il coefficiente riduttivo k_{crit-c} si calcola in funzione della snellezza relativa di colonna $\lambda_{rel,c}$, che vale:

$$\lambda_{\text{relc}} = \sqrt{\frac{\mathbf{f}_{c,o,k}}{\sigma_{c,crit}}} = \frac{\lambda}{\pi} \sqrt{\frac{\mathbf{f}_{c,o,k}}{\mathbf{E}_{0,05}}}, \qquad (4.4.14)$$

- fc.o.k resistenza caratteristica a compressione parallela alla fibratura;
- σ_{c,crit} tensione critica calcolata secondo la teoria classica della stabilità, con i valori dei moduli elastici caratteristici (frattile 5%);
- λ snellezza dell'elemento strutturale valutata per il piano in cui essa assume il valore massimo.

Quando $\lambda_{rel,c} \leq 0.3$ si deve porre $k_{crit,c} = 1$, altrimenti

$$k_{crit,e} = \frac{1}{k + \sqrt{k^2 - \lambda_{rol,e}^2}},$$
 (4.4.15)

per legno massiccio β_c = 0,2;

- per legno lamellare $\beta_c = 0,1$.

Segue uno stralcio da CNR-DT 206/2007.

6.5.2.1 Elementi inflessi (instabilità di trave).

Nel arte di fleccione surplice, con manento fistente agare attorne all'acte fare y della serione (acte trajtano origonale e quello di possibili sorgalianento), con tilerianento illa innicae dovata al mavine monarto agarte nel retto di terre compasso te due successivi ringgi travinali, dave entre soldattati la segarte relazione.

$$\frac{\sigma_{n,s}}{k_{nbs}f_{nd}} \leq 1$$
(6.21)

adb.gode

- $\sigma_{\rm and}$ è la tensione di calcolo massima per flessione;
- $l_{\rm min}$ è il coefficiente ridativo di tensione milita per instabilità di tense, per tense conte della mitatione di ordinate do donalemente laterale; $f_{\rm m}$ é la resistenca di estente a flessione, determinata tenendo conto anche delle dimensioni della
- ione traverale mediante il coefficiente la

Per travi ameri una davizzione laterale iniziale rispetto alla ratti losisti cui limiti definiti nel parte 3.1.5 si possone assunare i seguenti valori del coefficiente di tensione critica l_{efent}:

$$\hat{\mathbf{t}}_{min} = \begin{bmatrix} 1 & \text{per} & \hat{\mathbf{t}}_{min} \approx 0.75 \\ 1.55 - 0.75 \hat{\mathbf{t}}_{min} & \text{per} & 0.75 < \hat{\mathbf{t}}_{min} \approx 1.4 \\ 1/\hat{\mathbf{t}}_{min}^2 & \text{per} & 1.4 < \hat{\mathbf{t}}_{min} \end{bmatrix}$$
(6.12)

deve:

- $|\hat{s}_{\rm reta} = \sqrt{f_{\rm max}} / \sigma_{\rm max}$ ë la snëllezen relativa di trave,
- Any è la resistence consteristion a flessione.
- $\omega_{\rm max}$ é la tentine critien per lleusine cultolata secondo la tenta classica della stabilità, con i valori dei moduli classici consteristici (frattle 9%).

La tensione erifica assente il valore-

$$\sigma_{\rm max} = \frac{M_{\rm yrm}}{N_{\rm y}} \tag{6.23}$$

More è il memerato critico per instabilità flesse-torsionale attorno all'usoe forte y della sceiene; W₂ è il modulo di resistenza a flessione attorno all'asse y.

Il memories critico è dato dalla relazione:

$$M_{\rm gail} = \frac{\pi}{l_{\rm gail}} \sqrt{E_{\rm LH} \cdot I_{\rm s}} \cdot G_{\rm LH} \cdot I_{\rm tot} \qquad (5.24)$$

nd b male:

- $E_{\rm eff}$ à il module electrice caratteristice parallelo alla fibratuaz;
- G_{ER} & il modulo elastica tangenziale consteristico: si può assumese G_{ER} = E_{RE} (G_{mm}/E_{Rem}); $=J_{\rm c}$ é il momento di incrvia della sexione relativo all'asse debole re
- $-\lambda_{\rm in}$ è il momento di inerzia territorale della sezione;
- las è la luge efficace della trave, che fiene cento sia delle condizioni di vincolo che del tipo di

la mancanza di valutazioni più rigerose, i valori da adottare per la langhezza efficace $l_{\rm eff}$ si poveno In macrotical visitations per regione, i vision na souther per a trajectori ericke (μ e position relivant dilla Titolia (3-), visibi per tassi on construct terminale impeñhi agit appagi e onizo-applicato nel haricanto della vesione. Il vindelo li riportato in titolla representa la haci del muto interna compresente da na tagite missoli canzacione. Per altre vincorisci di conizo del visione, si patri face riferimento a sposifiche prescritazia normative di compresato validati e a valutazioni territori con esti da ta tagite riferimenti a seriora restangulare con kilo 2-5, contra $h_{\rm est} = 0, k_{\rm e}^2/3, si$ $territori e ricores e di netta primentica a seriora restangulare con kilo 2-5, contra <math>h_{\rm est} = 0, k_{\rm e}^2/3, si$

mak assumese

$$\sigma_{m,m} = \frac{\pi}{l_m} \frac{h^2}{h} K_{\rm BM} \sqrt{\frac{C_{\rm bM}}{K_{\rm BM}}} \qquad (5.25)$$

Il coefficiente k_{aban} poù covere posto agnale ad 1 quendo lo obandarento latende del berdo comprasos è impedito per retta la bargherro della troce e la rotazione tranicaste agli appaggi è andi cossi dimedito. Nel coso di more di alterza noriabile ni guto commere il valore recello di k nel tratto di troce compreso tra due ringgi tersianali successivi.

Taballa 6.7 Valuei della basherra effi

The second se				
Condizioni di vincolo	Tipo di carico o di sollecitazione	44		
	Menerato flettente costante nel tratto L	1.0 Z		
Semplice appaggio	Carico unifernemente distribuito	0.97.		
	Forta concentrata in merzaria	0.8 /.		
locatio adrenestremo	Carico nuiforregregate distribuito	0.5 /		
(mensola)	Ferra concentrata all'estrento libero	0.8.2		

Nel caso di Bessione deviata, cinè con magneti Estenti agenti sia attanto all'asse forte y sia attanto all'asse debale e della verione, devena concer coddicistre entrambe le relazioni segnetti:

$$\frac{\sigma_{nyy}}{k_{nyy}f_{nyy}} + k_{n}\frac{\sigma_{nyy}}{f_{nyy}} < 1 \qquad \qquad k_{n}\frac{\sigma_{nyy}}{k_{nyy}f_{nyy}} + \frac{\sigma_{nyy}}{f_{nyy}} < 1 \qquad (5.25)$$

 $\sigma_{\rm kejd}$ e $\sigma_{\rm kejd}$ sono le tensioni di calcolo massime per flessione rispeti
ysomente attorno agli assi y

 $\sum_{k=0}^{n-1} c_{k+1}$ some le resistence di calcola a ficosione, determinate tenendo conto melle delle dimensioni della sedone traversale mediante il coefficiente $k_{\rm e}$

i valori da adottore per il coefficiente la senso quelli già riportati al punto 8.8.1.6.4. Nel cano in vai mines muche mos situes normale di tradente (ade trassinilente) e la seniore con-inali intermente tena, devone coscre traditotate le segnenti che conditioni :

 $\frac{\sigma_{out}}{f_{out}} + \frac{\sigma_{aud}}{k_{aud}} + k_{a}\frac{\sigma_{aud}}{f_{out}} < 1 \qquad \qquad \frac{\sigma_{out}}{f_{out}} + k_{a}\frac{\sigma_{aud}}{f_{out}} + \frac{\sigma_{aud}}{f_{aud}} < 1 \quad (6.27)$

nelle quili

 $\alpha_{b,d}$ é la tenéner di calcolo per trazione, $\beta_{b,d}$ é la tenéner di calcolo a tenéne, detenniario resendo conte aucho della dimensioni della sociare travarale modunte il coefficiente k_0

Nel case in cui agine andre uno sforzo normale di compressione (ute pressonificate), devono cosses soddivinte la varifiche riportate nel successivo parte $8.8.22\times$

6.5.2.2 Elementi compressi (Instabilità di colonna)

di asta soggetta solo a sforto normale deve essere urddisfatta la segnente condizione:

$$\frac{\sigma_{net}}{k_{my} f_{net}} \le 1$$
 (6.28)

nella quale:

- $\alpha_{\rm cold}$ è la tensione di compressione di colcolo per sforzo normale; É de la resistanza di calcolo a compressione.
- $t_{\rm out}$ è il coefficiente rotativo di tensione attica per instabilità di colonza velutato per il piano in contro di nomen il value minima.

Il coefficiente ridativo $k_{\rm obs}$ și calcola în fanzione della orellezza relativa di colonna $k_{\rm obs}$ che valet

$$\lambda_{\rm alga} = \sqrt{\frac{f_{\rm alga}}{\sigma_{\rm cont}}} = \frac{\lambda}{\pi} \sqrt{\frac{f_{\rm alga}}{\kappa_{\rm tot}}} \tag{6.29}$$

 $-f_{\rm eff}$ à la sosistenza cambristica a compressione parallele alla fibratura;

 - α_{int} è la traviane attica coloriete soccado la team alsona della subilità, con i valori dei mobili chafei constenistici (intile 5%); λ è la suellezza dell'elemento strutturale valutata per il piano in cui essa assume il valore

Quando $\beta_{\rm effe} \leq 0.5$ si dave por
ta $k_{\rm effe} = 1,$ altrimenti:

$$k_{\rm max} = \frac{1}{k + \sqrt{k^2 - \lambda_{\rm max}^2}} \qquad \qquad {\rm con} \qquad k = 0.5 \ 1 + f_{\rm m}^2 \ \lambda_{\rm max} - 0.3 \ + \lambda_{\rm max}^2 \qquad (6.30)$$

dove β,b i il coefficiente di imperfezzone, che, se gli elemenți nentrano nei lanul di rettilmenti definiti al parte 3.1.5, protocomence i segnerri volori:

per legno ressolacio 32 = 0.1 per legno lancelare | R = 0.1

6.5.2.3 Elementi presso-inflessi (Instabilità composta di trave e di colonna)

a.5.2.2 piermenti presso intraesi (nastatina composite al trave e al cononta) Nel mor di nas stato composto di compositore e di deviane deviate, si può operare nel seguente molo. Per l'ane prescriptiva, nel caso in uni il problema dell'instabilità di trave sia tracembile (ciete ritti d_{ella} 2019), se d_{ella} 303 si possento segni la protributti di si il parto 8.5.8 -Alticanti, in utti gli ditti così, dovintato essere soddicitate le conditioni segnetti:

$$-\frac{\sigma_{out}}{k_{au}f_{out}} + \frac{\sigma_{aud}}{k_{au}f_{out}} + k_{a}\frac{\sigma_{aud}}{f_{aut}} \leq 1 \qquad -\frac{\sigma_{out}}{k_{au}f_{out}} + k_{a}\frac{\sigma_{aud}}{k_{au}f_{out}} + \frac{\sigma_{aud}}{f_{aud}} \leq 1 \qquad (6.3)$$

nelle ondie ϕ_{met} e ϕ_{met} seno le tensioni di calcolo musime per flevolore rispetitomente interno ugli noi y

 $f_{\rm mg,2} \circ f_{\rm mad}$ sono le resistenze di calcolo a flessione; J_ é il coefficiente di ridistribuzione riportato al panto 6.5.1.6 -.

Nel cuso di flevione agente in un solo pinto (m - Figura 6-1), si potri nilizzare in alternativa la confisione agente:

$$= \frac{\sigma_{expl}}{k_{abs}f_{abs}} \left(\frac{\sigma_{apsl}}{k_{abs}f_{apsl}} \right) \leq 1 \qquad (6.33)$$

l valori de assument per i coefficienti di tensione aritize $k_{\rm exp}$ per l'instabilità di trave sono riportati al panto 6.5.2.1.

Come si evince da un rapido confronto dei due stralci di normativa riportati, le NTC 2018 e la CNR-DT 206/2007, forniscono le medesime relazioni di verifica, ma quest'ultima esplicita anche le relazioni di calcolo dei parametri critici.

/erifica a taglio Verifica a to	orsione Verifica i	nstabilità Verifi	ica esercizio	Sezione ridotta
Ascissa 228.769	Calcola			Sezione critica
Combinazione critica	15			
Forza assiale	494.50301	Momento crit	tico	3004256.1
Torsione	0.00000000	Tensione crit	ica fless.	1802.5537
Momento y	-0.0000000	Tensione critica compr.		106.00953
Momento z	-139755.39	Snellezza relativa fless.		0.37606729
Taglio y	98.908822	Snellezza relativa comp.		1.4212709
Taglio z	0.00000000	Fattore critico Kcrit,m		1.0000000
		Fattore critic	o Kerit,c	0.41597489
Lunghezza eff. compr.	500.00000		Tensione di calcolo	Resistenza di confronto
Lunghezza eff. flessionale	500.00000	Assiale	0.989006	114.208
Fattore riduttivo kmod	0.800000	Flessione y	0.000000	135.962
Fattore khy	1.00000	Flessione z	67.0826	135.962
Fattore khz	1.00000	Fattore di sfru	uttamento	0.514209
rattore sicurezza parziale	1.50000	Esito della ver	ifica VE	RIFICATO

I risultati mostrati sonoi seguenti.

Per il significato dei risultati descritti precedentemente si rimanda al paragrafo della Verifica presso-tenso-flessionale.

Momento critico

valore del momento critico calcolato con la relazione 6.24 della CNR-DT 206/2007

Tensione critica fless.

valore della tensione critica calcolata con la relazione 6.23 della CNR-DT 206/2007

Tensione critica compr.:

valore della tensione critica determinata dall'uguaglianza del secondo e terzo membro presenti nella relazione 6.29 della CNR-DT 206/2007

Snellezza relativa fless. valore calcolato con la relazione fornita dalla CNR-DT 206/2007 al punto 6.5.2.1

Snellezza relativa compr. valore calcolato con la relazione 6.29 della CNR-DT 206/2007

Fattore critico Kcrit,m. valore calcolato con la relazione 6.22 della CNR-DT 206/2007 al punto 6.5.2.1

Fattore critico Kcrit,c.

valore calcolato con la relazione 6.30 della CNR-DT 206/2007 al punto 6.5.2.1 Tensione di calcolo e Resistenza di confronto: vengono riportati i vari valori di tensione agente e resistente relativi all'instabilità previsti dalle verifiche di norma per le azioni assiali e flessionali secondo i due assi.

Fattore di sfruttamento

tra tutte le verifiche eseguite, viene mostrato il massimo valore di sfruttamento dell'elemento

Lunghezze efficaci degli elementi

Per le verifiche di instabilità, risultano determinanti la lunghezza di libera inflessione e la lunghezza di sbandamento laterale per l'instabilità flesso-torsionale, che la norma chiama lunghezze efficaci. Tali lunghezze sono dipendenti dalle condizioni di vincolo, e da altri elementi (es. ritegni torsionali) che generalmente non vengono inseriti in un modello di calcolo agli elementi finiti.

Di default il programma assume tali lunghezze pari alla lunghezza dell'elemento che modella la trave o il pilastro, e spesso potrà nascere l'esigenza di dover modificare per alcuni elementi lunghezza efficace da considerare nella verifica, tale operazione si effettua con il comando illustrato di seguito:

Verifica esercizio

In questo dialogo vengono mostrati i risultati relativi alla verifica secondo i punti 4.4.7 delle NTC 2018 e 6.4 delle Istruzioni CNR-DT 206/2007.

Per questa verifica viene riportato solo lo stralcio della CNR-DT 206/2007, poiché più completo rispetto alle indicazioni fornite dalle NTC 2018.

6.4 - STATI LIMITE D'ESERCIZIO

6.4.1 - Deformazioni istantanee e finali

Le deformazioni di una struttura, dovute agli effetti delle azioni, degli stati di coazione, delle variazioni di umidità e degli scorrimenti nelle unioni, devono essere contenute entro limiti accettabili, in relazione sia ai danni che possono essere indotti ai materiali di rivestimento, ai pavimenti, alle tramezzature e, più in generale, alle finiture, sia ai requisiti estetici ed alla funzionalità dell'opera.

In generale, nella valutazione delle deformazioni delle strutture si deve tener conto della deformabilità tagliante e di quella dei collegamenti.

Considerando il particolare comportamento reologico del legno e dei materiali derivati dal legno, si devono valutare sia la deformazione istantanea sia la deformazione a lungo termine.

La deformazione istantanea, provocata da una certa condizione di carico, si calcola usando il valore medio dei moduli di elasticità normale e tangenziale del materiale per le membrature ed il valore istantaneo del modulo di scorrimento (K_{ser}) per le unioni.

Il modulo di scorrimento istantaneo, K_{ser} , delle unioni può essere determinato mediante prove sperimentali secondo la EN 26891 (dove k_z corrisponde a K_{ser}) o può essere calcolato introducendo i parametri caratterizzanti il materiale e l'unione come riportato al punto 6.4.2 -.

La deformazione a lungo termine può essere calcolata utilizzando i valori medi dei moduli elastici ridotti opportunamente mediante il fattore $1/(1+k_{def})$ per le membrature e utilizzando un valore ridotto con lo stesso fattore del modulo di scorrimento dei collegamenti, dove k_{def} è il coefficiente che tiene conto dell'aumento di deformazione nel tempo dovuto all'effetto combinato della viscosità e dell'umidità. Per esso si possono utilizzare i valori riportati in Appendice B - Tabella 17-1.

Pertanto per il calcolo della deformazione iniziale (uin) occorre valutare la deformazione istantanea con riferimento alla combinazione di carico rara.

Per il calcolo della deformazione finale (u_{fin}) occorre valutare la deformazione a lungo termine per la combinazione di carico quasi permanente e sommare a quest'ultima la deformazione istantanea dovuta alla sola aliquota mancante, nella combinazione quasi permanente, del carico accidentale prevalente (da intendersi come il carico variabile di base della combinazione rara).

La deformazione finale ufin, si può pertanto valutare come:

$$u_{\text{fin}} = u_{1,\text{in}} (1+k_{\text{def}}) + u_{21,\text{in}} (1+\psi_{21} k_{\text{def}}) + \Sigma_{(i=2...n)} \psi_{2i} u_{2i,\text{in}} (1+k_{\text{def}})$$
 (6.2)

dove:

u1,in è la deformazione istantanea del carico permanente

u21,in è la deformazione istantanea del carico accidentale prevalente

u2i,in è la deformazione istantanea della i-esima azione variabile della combinazione

In via semplificata la deformazione finale u_{fin} , relativa ad una certa condizione di carico, si può valutare come segue:

$$u_{fin} = u_{in} + u_{dif} \qquad (6.2.a)$$

dove:

- u_{in} è la deformazione iniziale (istantanea), calcolata con riferimento alla combinazione di carico rara;
- u_{dif} è la deformazione differita che può essere valutata attraverso la relazione:

$$u_{dif} = u'_{in} \cdot k_{def}$$
 (6.3)

nella quale:

- u^{*}_{in} è la deformazione iniziale (istantanea), calcolata con riferimento alla combinazione di carico quasi permanente;
- k_{def} è il coefficiente riportato nell' Appendice B Tabella 17-1.

I risultati mostrati sono i seguenti.

Deformazione iniziale (u_in)

valore di deformazione istantanea relativa alla combinazione di carico di esercizio quasi permanente

Deformazione differita (u_dif)

valore di deformazione differita calcolata con la relazione 6.3 della CNR-DT 206/2007

Deformazione finale (u_fin)

valore di deformazione finale calcolata con la relazione 6.2.a della CNR-DT 206/2007, somma tra (u_in) e (u_dif)

Coefficiente kdef

coefficiente che tiene conto dell'aumento di deformazione nel tempo dovuto all'effetto combinato di viscosità e dell'umidità

L/u

rapporto tra la luce dell'elemento e la deformazione finale

L/u max

rapporto massimo ammissibile tra la luce dell'elemento e la deformazione finale, tale valore può essere modificato dall'utente a seconda della tipologia di impalcato (solaio interno o di copertura), o della configurazione nella struttura dell'elemento oggetto della verifica, (ad esempio nel caso di sbalzi tale valore deve essere raddoppiato)

Rapporto di verifica

è il rapporto tra L/u ed L/u max, che deve essere maggiore di 1.0 per soddisfare la verifica di deformazione.

Il programma non esegue valutazioni dello scorrimento delle unioni.

Verifica SLD

Il comando Verifica SLD permette di ottenere informazioni riguardo la verifica agli spostamenti orizzontali della struttura sotto azione sismica.

La norma non fornisce indicazioni riguardo le limitazioni degli spostamenti orizzontali, pertanto nel programma sono state inserite le modalità di verifica richieste per gli edifici in acciaio (data l'affinità tra le strutture realizzate con elementi lignei ed elementi in acciaio), lasciando all'utente la facoltà di eseguire o meno tale tipo di verifica.

Cliccando due volte sull'icona del comando, viene aperto il dialogo appresso rappresentato.

Opzioni contenimento del danno
Stato limite
SLO Moltiplicatore 1.00000
SLD
SLV
Valore riferimento per rappresentazione grafica Valore di riferimento 0.005000
Tamponatura collegata rigidamente
Tamponatura non collegata rigidamente
Continua

Nel dialogo deve essere selezionato lo stato limite rispetto al quale si vuole eseguire la verifica degli spostamenti. Si può scegliere tre le azioni per lo SLD, lo SLV o lo SLO.

Si può assegnare un moltiplicatore degli spostamenti, come richiesto dalla norma al punto 7.3.3.3 delle NTC 2018 nel caso di SLV.

Deve essere assegnato nella cella Valore di riferimento il valore del rapporto limite tra lo spostamento subito in testa ad un elemento verticale e l'altezza di interpiano.

E' possibile far assegnare automaticamente tale valore tramite i bottoni sottostanti che imposteranno i valori prescritti dalla norma secondo il seguente criterio.

Tamponatura collegata rigidamente: limite dr < 0,005 h secondo la relazione 7.3.16 del DM18 Tamponatura non collegata rigidamente: limite dr < 0,01 h secondola relazione 7.3.17 del DM 18 Nel caso lo stato limite di riferimento selezionato per eseguire la verifica sia lo SLO, vengono moltiplicati per 2/3 tali valori come richiesto da normativa al punto 7.3.7.2 delle NTC 2018.

Dopo aver impostato le opzioni di verifica selezionare quindi l'elemento (o gli elementi) verticali che si desidera verificare. Si può fare anche una selezione globale. In questo caso gli elementi verticali vengono ordinati per quota usando una lista di piani, e per ogni piano viene mostrata la verifica per l'elemento che subisce lo spostamento maggiore.

I dati ottenuti sono una lista di quote di impalcato per ognuna delle quali vi è il valore di spostamento (relativo) e cioè la differenza di spostamenti di estremità, e spostamento d_r rispetto all'interpiano (Spost./Altezza).

Oltre alla verifica a dialogo, è possibile ottenere una rappresentazione dei risultati di tale verifica attivando nel dialogo Visualizzazione involucro (descritto precedentemente) l'opzione Stato limite di danno.

Rappresentazione delle verifiche

Il comando Rappresentazione verifiche permette di ottenere la rappresentazione del fattore di sfruttamento delle membrature.

Cliccando due volte sull'icona della palette viene aperta la seguente finestra di dialogo:

Visualizzazione involucro	
Sfruttamento flessionale	
🔘 Sfruttamento a taglio	
Sfruttamento torsionale	
🔘 Sfruttamento instabilità	
🔘 Sfruttamento esercizio	
💿 Sfruttamento massimo	
🔘 Stato limite di danno	
Mostra facce nascoste	
	Continua

In questa finestra deve essere selezionato il tipo di verifica per la quale si vuole ottenere la rappresentazione del fattore di sfruttamento.

L'opzione Sfruttamento massimo consente di rappresentare lo sfruttamento maggiore calcolato dal programma, tra tutte le verifiche eseguite.

Una volta selezionato il tipo di rappresentazione voluta, si clicca il bottone Continua e si seleziona l'elemento voluto oppure con il lazo di seleziona tutta o una parte della struttura ottenendo una rappresentazione del tipo mostrato in figura.

La rappresentazione avviene per mappatura di colori sul modello solido della struttura.

Il check-box Mostra facce nascoste, se selezionato, permette di ottenere la rappresentazione sulle facce non visibili dalla vista assonometrica corrente, utile nel caso su alcuni elementi si abbiano stati di sollecitazione biassiali.

All-In-One - [VERIFICA MEMBRATURE GUIDA NUOVO (Elwood, modello)]		
Eile Modifica Visualizza Esecutivi Carichi Funzioni Ambienti ? \square <td>Tutti</td> <td>(j) 225.000000000 ▼ (i) 225.000000000 ▼</td>	Tutti	(j) 225.000000000 ▼ (i) 225.000000000 ▼
0.000e+000 1.11re.001 2.222e-001 3.333e-001 4.444e-001 5.556e-001 6.667e-001 1.000e+000 1.000e+000 1.000e+000 1.000e+000 1.000e+000 0.000e+000 1.000e+000 0.000e+0000 0.000e+000 0.000e+0000 0.000e+000 0.0000 0.0000	Visualizzazione involucro Sfruttamento flessionale Sfruttamento a taglio Sfruttamento torsionale Sfruttamento instabilità Sfruttamento esercizio Sfruttamento massimo Mostra facce nascoste	
100001	F: Kg L: CM P: Kg	g/ cm2 mem: 05 %

Verifiche giunto

Il comando Verifiche giunto si attiva dalla quarta fila di icone della apalette e permette di accedere al dialogo di controllo dei risultati delle verifiche dei giunti della struttura.

Una volta selezionato il comando, cliccando sul nodo che si desidera indagare viene aperta la seguente finestra di dialogo:

Verifica connessione Verifica Sforzi massimi	And I had I had a set and	
	Accessorio	•
	Positivo Negativo Resistenza taglio X 0.00000000 0.0000000 Resistenza taglio Y 0.00000000 0.0000000 Resistenza taglio Z 0.00000000 0.00000000	
X X Z Z	Dettagli N, mm	•
	Combinazione Più gravosa -	~
Cambia elemento Unită: cn	n, kg, Hesistenza Azione Fattore sicurezz Negativo Positivo Fx 0.00000000 0.0000000 0.000000 0.000000 Fy 0.0000000 0.0000000 0.000000 0.000000 Fz 0.0000000 0.0000000 0.000000 0.000000 Mx 0.0000000 0.0000000 0.000000 0.000000 My 0.0000000 0.0000000 0.000000 0.000000 Mz 0.0000000 0.0000000 0.000000 0.000000	:a
	ОК	

Nella finestra analogamente a quanto fatto nel dialogo "Gestione connessione", si deve andare a rendere corrente l'elemento al quale sono stati assegnati gli accessori, tramite il bottone "Cambia elemento".

Se in uno stesso giunto vi sono più elementi ai quali sono stati assegnati accessori, si procede controllando i risultati per un elemento alla volta, cambiando l'oggetto corrente tramite il bottone "Cambia elemento".

Una volta selezionato l'elemento di interesse, cliccando il bottone Verifica il programma mostrerà nella parte destra del dialogo i risultati del calcolo.

/erifica connessione				2	x	
Verifica Sforzi massimi					1	
	Acces	sorio	uadretta inferiore		•	
	Unità:	:cm, kg,	Positivo N	legativo		Squadretta inferiore
	Resis	tenza taglio X	0.000000 38	2.767	- 11	Piastra superiore
	Resis	tenza taglio Y	0.000000 32	9.994 :25.26	- 11	
	Hesis	tenza taglio∠	1623.36 16	20.00	- 11	
	(N, mm	n, MPa) Dettagli 🛛 Car	atteristiche mezzi di u	inione	र	
	Tipo m Diama	ezzo di unione	Bullone		~ ` \	$\langle \rangle$
	Lungh	ezza infissione	100.000			
	Resiste	enza di calcolo acciaio	piastra 220.075	_		Caratteristiche mezzi di unione
	Resiste	enza mezzo unione rifol enza tranciamento	30159.297	ь		Piastra su elemento principale Piastra su elemento secondario
					-	
	Combin	nazione Più gravosa	3	• 1		
Cambia elemente	Unità:cm, kg,	Resistenza	Azione	Fattore sicure:	za	
Cambia elemento		Negativo Positivo	2		- 11	
Verifica	Fx ~	4238.50 3855.73	0.00000000	>10.0	- 11	
	Fy -:	329.994 0.000000	.312.50000	1.05598	- 11	
	rz Mx	40634.0 40634.0	-0.00000000	>10.0		
	Му С	0.000000 0.000000	0.00000000	0.000000		
	Mz -	96393.2 9569.18	0.00000000	>10.0		
				0	ĸ	
						1

La parte destra del dialogo, dove vengono restituiti i risultati della verifica, è organizzata in più parti che riportano i risultati della verifica dell'accessorio e del giunto nel suo complesso.

Risultati dell'Accessorio

Nella in alto sono mostrati i risultati relativi al singolo accessorio, dall'apposito menu a tendina si può selezionare l'accessorio per il quale si vogliono controllare le resistenze.

Vengono restituite le resistenze a taglio dell'accessorio, secondo le tre direzioni (nella rappresentazione del giunto è riportato anche il sistema di riferimento locale) sia per il verso positivo che negativo.

Le resistenze dell'accessorio riportate, sono il minimo tra tutti i vari anelli della catena che costituiscono elemento resistente dell'unione. Nell'esempio sopra, è resa corrente la trave (evidenziata in rosso nell'immagine), e nella tendina è selezionata la squadretta inferiore (colorata in giallo nell'immagine), per tale accessorio il programma calcola la resistenza in direzione X positiva che è il minimo tra le seguenti.

la resistenza assiale della sezione piena e netta trasversale del piatto orizzontale della squadretta;

- la resistenza a taglio/flessione della sezione piena e netta trasversale del piatto verticale della squadretta;
- la resistenza a rifollamento e tranciamento dei bulloni sul piatto orizzontale della squadretta;
- la resistenza a rifollamento e tranciamento dei bulloni sulla trave in legno a cui sono connessi i bulloni; La resistenza in direzione X negativa è il minimo tra:
- la resistenza assiale della sezione piena e netta trasversale del piatto orizzontale della squadretta;,
- la resistenza a taglio/flessione della sezione piena e netta del trasversale del piatto verticale della squadretta;
- la resistenza a rifollamento e tranciamento dei bulloni sul piatto orizzontale della squadretta;
- la resistenza a trazione dei bulloni sul piatto verticale della squadretta;

la resistenza ad estrazione dei bulloni dalla colonna in legno, e non avendo assegnato noi un valore alla forza resistente ad estrazione, abbiamo che tale meccanismo di collasso non ha elementi resistenti che gli si oppongono, ed il valore posto com Resistenza a taglio X negativa è nullo.

Con lo stesso principio sono calcolati i valori di resistenza a taglio secondo le altre due direzioni.

Cambiando dal menu accessorio assegnato all'elemento, vengono aggiornati i valori riportati, seguendo sempre il principio della minima resistenza tra tutti i vari meccanismi di rottura.

Risultati di Dettaglio

In questa parte del dialogo è presente un menu dal quale è possibile selezionare le informazioni che si vogliono visualizzare nel quadro sottostante.

Le opzioni disponibili sono elencate nel seguito.

Caratteristiche mezzi di unione

Vengono riportate le informazioni sul tipo la geometria e la resistenza del singolo elemento di unione quali: Tipo mezzo di unione: assegnato precedentemente dall'utente (Bullone, chiodo, ecc.);

Diametro (mm): assegnato precedentemente dall'utente;

Lunghezza infissione (mm): assegnato precedentemente dall'utente;

Resistenza trazione acciaio (Mpa): tensione di rottura a trazione dell'acciaio che costituisce il mezzo di unione;

Resistenza di calcolo acciaio piastra (Mpa): tensione di snervamento dell'acciaio che costituisce l'accessorio divisa per il coefficiente di sicurezza gammaM;

Resistenza mezzo unione rifoll. acciaio (N): resistenza a rifollamento del mezzo di unione contro il piatto che costituisce l'accessorio, calcolata secondo la relazione 4.2.61 del DM18;

Resistenza tranciamento (N): resistenza a tranciamento del mezzo di unione, calcolata secondo la relazione 4.2.57, 4.2.58, 4.2.59 del DM18;

Piastra su elemento principale

Vengono riportate le informazioni sulla resistenza della connessione riferite all'attacco dell'accessorio sull'elemento principale, che è da intendere come l'elemento corrente impostato dall'utente, come definito precedentemente. Le informazioni riportate sono:

Fattore interp. spess. piastra (0=sott, 1=sps.)

viene indicato con il valore 0 o 1 se la piastra è definitia SOTTILE o SPESSA secondo le indicazioni del punto 7.8.2.3 delle Istruzioni CNR-DT 206/2007;

Resistenza

mezzo unione rifollamento 0° (Mpa): viene riportata la resistenza a rifollamento del mezzo di unione contro l'elemento ligneo nella direzione parallela alla fibratura, calcolata secondo il punto 7.8.5.1.2 delle Istruzioni CNR-DT 206/2007

Resistenza rifollamento 90° (Mpa)

viene riportata la resistenza a rifollamento del mezzo di unione contro l'elemento ligneo nella direzione perpendicolare alla fibratura, calcolata secondo il punt 7.8.5.1.2 delle Istruzioni CNR-DT 206/2007;

Momento snervamento (Nxmm)

viene riportata la resistenza del momento di snervamento del mezzo di unione contro l'elemento ligneo , calcolata secondo i punto 7.8.5.1.1 delle Istruzioni CNR-DT 206/2007;

Estrazione (N)

viene riportata la forza di estrazione eventualmente assegnata dall'utente al mezzo di unione nel dialogo Assegnazioni Default

Mezzi unione efficaci

è il numero di mezzi efficace calcolato secondo le prescrizioni (variabili a seconda del mezzo di unione assegnato), dalle Istruzioni CNR-DT 206/2007;

Resistenza assiale (fv,Rk) x, Resistenza taglio (fv,Rk) y, Resistenza taglio (fv,Rk) z

sono riportate le resistenze fv,Rk nelle tre direzioni x,y,z calcolate secondo le relazioni indicate al punto 7.8.2.3 delle Istruzioni CNR-DT 206/2007;

Resistenza piastra a taglio ridotta per fless., Resistenza a taglio sezione netta piastra, Resistenza flessionale sezione piastra sono le resistenze della sezione del piatto dell'accessorio connesso all'elemento principale, calcolate nel piano della piastra, al netto delle forature;

Resistenza flessionale chiodatura nel piano, Taglio limite per flessione chiodatura nel piano

sono le resistenze flessionali ed a taglio dei mezzi di unione, calcolati sulla base delle fv,Rk e rapportate alla disposizione dei mezzi, quindi considerando il numero efficace, ed il braccio di azione delle forze resistenti dei mezzi di unione.

Res. taglio piastra fuori-piano rid. Flessione, Res. taglio fuori-piano netta piastra, Res. flessionale fuori-piano piastra sono le resistenze della sezione del piatto dell'accessorio connesso all'elemento principale, calcolate perpendicolarmente al piano della piastra;

Resistenza legno schiacciamento

è la resistenza dell'elemento ligneo nei confronti della compressione perpendicolare alla fibratura secondo il punto 6.5.1.4 delle Istruzioni CNR-DT 206/2007;

Piastra su elemento secondario

Vengono riportate le informazioni descritte sopra, ma riferite all'attacco dell'accessorio sull'elemento non impostato come corrente.

Risultati globali

Nella parte in basso a destra sono riportati i risultati di calcolo globali della resistenza dell'unione. Dal menu Combinazione è possibile cegliere la combinazione per la quale si vogliono controllare i risultati. Di default è riportata la combinazione definita Più gravosache è quella che fa riscontrare il Fattore di sicurezza più basso.

Una volta scelta la combinazione il programma mostra sotto la colonna Resistenza i valori delle sei caratteristiche di sollecitazione resistenti globali relative all'unione sia in verso positivo che negativo. Il termine globale indica che viene mostrata la somma di tutti i contributi alla resistenza dell'unione dei vari accessori assegnati.

Sotto la colonna Azione sono riportati i valori delle caratteristiche di sollecitazione trasmesse dall'elemento impostato come corrente nella combinazione selezionata.

Nell'ultima colonna è riportato il fattore di sicurezza relativo ad ogni sollecitazione.

Questo dialogo consente di accedere ad una seconda pagina: Sforzi massimi la quale riporta i valori delle azioni agenti sul nodo, per le sei combinazioni, ognuna riferita al valore massima di una delle sollecitazioni.

Verifica conne	essione							
Verifica Sf	orzi massin	บ่]						
		•						
Ascissa	Combinaz	ione Nx	Ту	Tz	Мх	Му	Mz	
500.0000	14	3.0312847	943.25000	-0.00000000	137.89794	0.00000000	-0.00000000	
500.0000	14	3.0312847	943.25000	-0.00000000	137.89794	0.00000000	-0.00000000	
500.0000	1	1.1729859	365.00000	-0.00000000	229.82990	0.00000000	-0.00000000	
500.0000	1	1.1729859	365.00000	-0.00000000	229.82990	0.00000000	-0.00000000	
500.0000	1	1.1729859	365.00000	-0.00000000	229.82990	0.00000000	-0.00000000	
500.0000	1	1.1729859	365.00000	-0.00000000	229.82990	0.00000000	-0.00000000	
								UK

Rappresentazione verifica giunto

Questo comando si attiva dal quarto gruppo di icone della palette e consente di ottenere una rappresentazione tramite mappa di colore sullo stato di verifica delle unioni.

Cliccando due volte sull'icona viene aperta la seguente finestra di dialogo:

I criteri di :	sfruttamento sa	ranno consider	rati solo per le o	componenti di st	orzo vistate
🔽 Tx	🔽 Ту	🔽 Tz	🚺 Mx	📝 Му	🚺 Mz
Applica	a anche nella s	tampa delle ve	ntiche		

In questo dialogo sono presenti gli indici corrispondenti alle 6 caratteristiche di sollecitazione agenti sul nodo, la spunta dei relativi check-box attiva o disattiva la rappresentazione della verifica dell'unione nei confronti delle varie azioni agenti. Ad esempio attivando i check-box Tx, Ty, Tz, saranno mostrati i risultati della verifica esclusivamente in relazione a tali sollecitazioni.

E' possibile applicare tale opzioni anche alla stampa dei tabulati spuntando il relativo Check-box.

Successivamente all'impostazione nel dialogo sopra si attiva il comando e si va a selezionare il nodo o i nodi per i quali si vuole ottenere la rappresentazione:

Questi saranno mostrati in mappatura di colore corrispondente al livello di sfruttamento.

I nodi che hanno un fattore di sfruttamento maggiore di 1.0 comporta che tali elementi saranno rappresentati in rosso.

Verifica resistenza all'incendio

Le funzioni relative a questa verifica sono attive solo se è presente l'ambiente Quarmon.

I comandi sono affidati alla quinta riga di icone delle palette.

I capitoli riguardanti questa verifica sono i seguenti:

- Opzioni per la resistenza al fuoco
- Dimensionamento ricoprimento
- Assegnazione conduttività dei lati
- Verifica membratura per incendio
- Rappresentazione verifica per incendio

Opzioni per la resistenza al fuoco

Nella pagina Resistenza al fuoco vengono richiesti tutti i parametri necessari per l'esecuzione delle verifiche in condizioni di incendio.

Parameurincendio		Caratteristiche ricoprimenti	
Velocità carbonizzazione (b0)	0.65000000	Densità lana di roccia (kg/mc)	30.000000
Velocità carbonizzazione (bn)	0.8000000		
Coeff. kfi per frattile 20%	1.2500000		
Durata incendio (min)	20.000000		
Dimensionamento ricoprimento			
Materiale ricoprimento	lessuno V		
Spessore (mm)	0.0000000		
tale (aria)	0.0000000	dfin	/
tcn (min)	0.00000000		/
ta (min)	0.00000000		
dfin (mm)	0.00000000		
	Calcola		
		V	+177

I dati richiesti sono i seguenti.

Parametri incendio

Velocità carbonizzazione (b0) (espressa in mm/min) è la velocità di carbonizzazione riportato per i vari tipi di essenza nella tabella 3.1 dell'EC 5 UNI EN 1995-1-2:2005;

Velocità carbonizzazione (bn) (espressa in mm/min)

è la velocità di carbonizzazione convenzionale di progetto, include l'effetto degli spigoli arrotondati, parametro definito al punto 3.4.2 e riportato per i vari tipi di essenza nella tabella 3.1 dell'EC 5 UNI EN 1995-1-2:2005; Il programma in funzione del tipo di legno impostato assume di default i valori di b0 e bn riportati nella tabella 3.1 dell'EC 5.

Coeff. Kfi per frattile 20%

è il coefficiente definito al punto 2.3 e riportato per i vari tipi di essenza nella tabella 2.1 dell'EC 5 UNI EN 1995-1-2:2005 da assumere pari a:

Legno massiccio: kfi = 1,25

Legno lamellare: kfi = 1,15 Nell'esecuzione delle verifiche in condizioni di incendio si assume il 20% come frattile di riferimento.

Il coefficiente kfi è appunto il fattore che consente il passaggio dal valore delle caratteristiche meccaniche riferito al frattile 5%, a quello riferito al 20%.

Durata incendio (min) è il tempo di durata dell'incendio

Caratteristiche ricoprimenti

Densità lana di roccia (kg/mc), nel programma è possibile assegnare dei ricoprimenti sui lati degli elementi volti ad isolare la trave o il pilastro dalle fiamme, i materiali che è possibile assegnare sono lana di roccia, gesso, e legno. Dato che il potere isolante della lana di roccia è funzione oltre che del suo spessore, anche della sua densità, nel caso si abbia questo tipo di ricoprimento l'utente deve assegnare la densità del materiale.

Dimensionamento ricoprimento

In questa sezione si può eseguire una pre-analisi dell'efficacia dello strato di ricoprimento adottato inserendo i seguenti dati: Materiale ricoprimento: dall'apposito menu si può scegliere il materiale che costituirà lo strato isolante degli elementi, le opzioni disponibili sono: Nessuno, gesso, legno, lana di roccia.

Spessore (mm: indica lo spessore del ricoprimento.

Cliccando sul bottone Calcola, possono ottenere le seguenti informazioni:

- tch (min) è il parametro definito al punto 3.4.3.1 dell'EC 5, il suo significato è spiegato successivamente;
- tf (min): è il parametro definito al punto 3.4.3.1 dell'EC 5, il suo significato è spiegato successivamente;
- ta (min): è il parametro definito al punto 3.4.3.1 dell'EC 5, il suo significato è spiegato successivamente;
- dfin (mm) rappresenta lo spessore superficiale carbonizzato della sezione resistente al tempo tm indicato nel campo Durata incendio

Nell'EC 5 il modello semplificato che descrive la carbonizzazione all'interno di un elemento strutturale ligneo è descritto nel seguente grafico:

La legge che descrive l'avanzamento della carbonizzazione nel tempo ha andamento lineare, ove l'inclinazione indica la velocità di carbonizzazione (b0 o bn) indicate in tabella 3.1 dell'EC 5.

Nel caso di un elemento privo di ricoprimenti, l'andamento è quello descritto dalla retta 1.

Nel caso di un elemento protetto da ricoprimenti, si ha l'andamento descritto dalla spezzata 2.

All'inizio dell'incendio si ha un intervallo fino al tempo tch ove il ricoprimento isola totalmente l'elemento strutturale, dopo i tempo tch si ha un parziale deterioramento delle proprietà isolanti del ricoprimento e quindi si inizia a carbonizzare la sezione dell'elemento, ma con una velocità minore rispetto a b0 e bn.

Al tempo tf si ha il totale deterioramento del ricoprimento, e si ha un incremento della velocità di carbonizzazione che arriva a superare i valori b0 e bn, questo a causa della presenza dei residui del ricoprimento che in tale intervallo divengono elementi di incremento alla velocità di carbonizzazione.

Al tempo ta il materiale di ricoprimento non ha più alcuna influenza e quindi la velocità di carbonizzazione diviene pari a b0 є bn.

A seconda del tipo di ricoprimento, dello spessore, e della densità assegnati, si può avere che tch, coincida con tf, per ulteriori approfondimenti si rimanda all'EC 5.

Lo spessore della porzione carbonizzata è calcolato con la relazione riportata al punto 4.2.2 dell'EC 5: dfin = dchar,n + k0 x d0

- d0 = 7,0 mm;
- k0 = è il coefficiente dipendente dal tempo, esso varia linearmente ed è posto pari a 0 per t=0 mentre è pari a 1 per t
 >= 20 min, per valori di t tra 0 e 20 viene calcolato il corrispondente valore di k0;
- dchar,n = è lo spessore carbonizzato definito al punto 3.4.3 dell'EC 5, in linea generale il suo valore è pari a dchar,n = b0 x t oppure dchar,n = bn x t a seconda delle condizioni di esposizione dei lati dell'elemento, inoltre se si hanno strat di protezione, il valore di dchar,n totale sarà calcolato come somma dei vari dchar,n parziali corrispondenti alle varie spezzate del grafico mostrato a pagina precedente.

Assegnazione conduttività dei lati

Selezionando il comando Assegna conduttività dei lati e cliccando un elemento (tenendo premuto il tasto shift è possibile eseguire una selezione multipla) apre la seguente finestra di dialogo.

		Ricoprimento lati	
	Ricoprimento lati		
		1.26	
		+	
			>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
		Course Seleziona tutto	
OK			ОК

Nel dialogo viene mostrata la sezione dell'elemento, alla quale è possibile assegnare lo stato conduttivo dei contorni. Selezionando l'icona con il simbolo della Matita si può poi selezionare un lato della sezione al quale sarà assegnato l'eventuale strato di isolamento tramite il seguente dialogo.

Condizioni conduzione	Direttamente esposto	
Rivestimento	Legno	
	Spessore (mm)	10.00
	ΟΚ	Annulla

Dal menu Condizioni conduzione viene assegnata la condizione dell'elemento scegliendo tra le seguenti opzioni: Isolato,

Direttamente esposto, Indirettamente esposto.

Dal menu Rivestimento è possibile assegnare l'eventuale strato isolante scegliendo tra: gesso, legno, lana di roccia. Nel campo Spessore viene assegnato lo spessore dello strato di rivestimento

Lo spessore è in millimetri.

I lati ai quali è stato assegnato un rivestimento vengono indicati sulla sezione tramite una linea parallela al lato rivestito. L'icona con una Freccia permette di operare delle modifiche sui lati a cui sono già stati assegnati in precedenza dei rivestimenti.

L'icona con l'immagine della gomma da cancellare permette di cancellare le assegnazioni precedentemente eseguite. Selezionando uno dei tre comandi appena descritti, e cliccando sul bottone Seleziona tutto il programma esegue il comando corrente su tutti i lati della sezione.

L'ultima icona permette di eseguire una assegnazione per metà sezione, attivando tale comando e cliccando prima una e poi l'altra porzione della sezione, è possibile andare ad assegnare rivestimenti differenti.

Nella cella accanto all'icona è possibile indicare un'ordinata differente della divisione rispetto al baricentro della sezione, inserendo un valore positivo o negativo a seconda che si voglia spostare la linea di suddivisione in alto o in basso rispetto al baricentro.

Le condizioni al contorno assegnate nel presente dialogo, si intendono valide per tutta la lunghezza dell'elemento e non è possibile assegnarle a tratti in lunghezza, nel caso si abbia tale necessità si consiglia di spezzare l'elemento in vari tratti direttamente nel modello realizzato in Nòlian.

Verifica membratura per incendio

Questo comando è analogo al comando Verifiche membrature della icona a palette n.3 (alla quale si rimanda per ulteriori approfondimenti) precedentemente descritto e presenta i medesimi risultati, l'unica differenza è che in questo caso le verifiche sono riferite alle condizioni di incendio, pertanto le sollecitazioni prese in considerazione sono quelle della famiglia Eccezionali, e i valori di resistenza sono calcolati sulla sezione residua dell'elemento ligneo depurata dallo strato carbonizzato.

In questo paragrafo descriveremo solo il contenuto dell'ultima pagina del dialogo delle verifiche, Sezione ridotta che mostra la rappresentazione della sezione ridotta con lo strato esterno carbonizzato presa in considerazione per l'esecuzione delle verifiche.

Rappresentazione verifica per incendio

Questo comando è analogo al comando Rappresentazione verifica membratura della icona a palette n.3 (alla quale si rimanda per ulteriori approfondimenti) precedentemente descritto e presenta i medesimi risultati, l'unica differenza è che ir questo caso le verifiche sono riferite alle condizioni di incendio, pertanto le sollecitazioni prese in considerazione sono quelle della famiglia Eccezionali, e i valori di resistenza sono calcolati sulla sezione residua dell'elemento ligneo depurata dallo strato carbonizzato.

Funzioni ausiliarie

Queste funzioni si attivano dal menu Funzioni oppure dalla sesta riga di icone delle palette.

Selezionando il seguente comando e selezionando poi uno o più elementi della struttura, si ottiene una vista del modello cor l'indicazione accanto ad ogni elemento del suo indice:

Visualizza denominazione elemento

Se con il comando Dati elemento presente nella icona a palette n.1, è stata assegnata una denominazione agli elementi del modello:

Selezionando il seguente comando e selezionando poi uno o più elementi della struttura, si ottiene una vista del modello cor l'indicazione accanto ad ogni elemento della sua denominazione:

Rappresentazione solida dell'elemento

Selezionando il seguente comando e selezionando poi uno o più elementi della struttura, si ottiene una vista solida trasparente del modello della struttura:

Copia/Incolla accessori

Dopo aver assegnato degli accessori ad un nodo, se all'interno della struttura sono presenti altri nodi che presentano le medesime caratteristiche del nodo iniziale, invece che operare su ogni nodo le medesime assegnazioni, è possibile tramite i comandi Copia ed Incolla accessori, di eseguire la duplicazione dell'unione a tutti i nodi che l'utente desidera. Una volta eseguite le assegnazioni sul nodo Sorgente, si attiva il comando selezionandolo dall'apposito menù a tendina nella barra in alto del programma, oppure si richiama digitando da tastiera Ctrl+C, a questo punto si deve cliccare sull'elemento trave o colonna vicino all'estremità del nodo Sorgente:

La conferma della selezione sarà comunicata all'utente tramite una evidenziazione dell'elemento cliccato nel tratto vicino al nodo Sorgente.

A questo punto si richiama il comando Incolla accessori selezionandolo dall'apposito menù a tendina nella barra in alto del programma, oppure si richiama digitando da tastiera Ctrl+V, e si va a cliccare sull'elemento trave o colonna vicino all'estremità del nodo Destinazione, per controllare che la copia sia andata a buon fine basta attivare il comando Rappresenta giunto nella icona a palette n.2:

E' possibile operare selezioni multiple dei nodi da rappresentare selezionandoli tenendo premuto il tasto Shift e dando conferma con il tasto Invio.

Note: Questo comando funziona correttamente se i nodi di Destinazione presentano le medesime caratteristiche del nodo Sorgente se non è possibile eseguire il comando Incolla accessori sul nodo di destinazione il programma ne darà avviso con il seguente messaggio:

L'accessorio "incollato" viene generato con le caratteristiche di default assegnate per renderlo conforme agli elementi che lo ricevono. Pertanto le modifiche geometriche eventualmente apportate non vengono copiate.

Laboratorio collegamenti

Il Laboratorio collegamenti è uno strumento messo a disposizione dell'utente sia per eseguire una pre-valutazione della resistenza dei mezzi di unione e della loro configurazione, da assegnare ai vari accessori per realizzare le unioni, oppure può essere uno strumento di valutazione della resistenza degli elementi di unione che non richiede la presenza all'interno del file di un modello strutturale.

1	aboratorio connessioni				
	Collegamento				
THE OTHER ADDRESS ADDRESS ADDRESS OF ADDRESS ADDRE			Mezzo di unione Bullone Direzione forza (*) Spessore piastra (mm) Numero righe connettori Numero connettori per riga Numero gruppi connettori Distanza gruppi connettori Distanza gruppi connettori (mr Piani di taglio Interasse parallelo alle fibre Interasse ortogonale alle fibre Diametro (mm)		Chiodo ciíndiico Chiodo scanalato Bullone Spinotto Vite
100 m	Momento snervamento My,k. (Nxmm) Resistenza rifolamento fh,k. (MPa) Resistenza caratt. estrazione. fax,k. (N) Numero elementi efficaci	0.0000000 0.0000000 0.0000000 0.0000000	Frk Kg	0.000000	
				ОК	

All'attivazione del comando viene aperta la seguente finestra di dialogo:

Nel dialogo devono essere inseriti i seguenti dati:

Mezzo di unione: selezionare il tipo dall'apposito menu;

Direzione forza (°): deve essere indicato l'angolo della direzione in cui si vuole valutare la resistenza, rispetto alla direzione della fibratura del legno;

Spessore piastra (mm): indicare lo spessore della piastra di connessione;

Numero righe connettori: indica il numero di file orizzontali di mezzi di unione;

Numero connettori per riga: indica il numero di mezzi di unione per ogni fila orizzontale;

NOTA: La distanza di interasse tra le righe e tra i vari mezzi di unione su ogni riga, è impostata automaticamente in base alle distanze minime di interasse dettate dalle Istruzioni CNR-DT 206/2007, ed impostate dall'utente nel dialogo Assegnazioni default nella pagina Interassi e distanze, e nella finestra del Laboratorio sono riportate tali distanze nella parte in basso espresse in mm.

Numero gruppi di connettori: tale dato è utile se si desidera valutare la resistenza di 2 gruppi di connettori posti a distanze differenti da quelle minime di norma, nelle celle Numero righe connettori e Numero connettori per riga&si assegna il numero di mezzi di unione per gruppo, e dal menu a tendina del Numero gruppi di connettori si seleziona 2

Distanza gruppi di connettori (mm): deve essere assegnata la distanza tra i gruppi di connettori;

Piani di taglio: deve essere assegnato il numero di piani di taglio, che equivale a considerare la presenza di 1 o 2 piatti di connessione;

Vengono riportati poi:

Interasse parallelo alle fibre in mm;

Interasse ortogonale alle fibre in mm;

Diametro (mm: diametro del mezzo di unione preso in automatico da quanto assegnato nel dialogo Assegnazioni default

Una volta eseguite tutte le assegnazioni si clicca il bottone Calcola ed il programma restituisce i seguenti dati:

Momento snervamento My,k (Nmm): viene riportata la resistenza del momento di snervamento del mezzo di unione contro l'elemento ligneo, calcolata secondo il punto 7.8.5.1.1 delle Istruzioni CNR-DT 206/2007;

Resistenza rifollamento (Mpa): viene riportata la resistenza a rifollamento del mezzo di unione contro l'elemento ligneo nella direzione assegnata rispetto alla fibratura, calcolata secondo il punto 7.8.5.1.2 delle Istruzioni CNR-DT 206/2007; Resistenza caratt. a estrazione:viene riportata la resistenza a estrazione assegnata dall'utente nel dialogo Assegnazioni default nella pagina Mezzi di unione

Numero elementi efficaci :è il numero di mezzi efficace calcolato secondo le prescrizioni (variabili a seconda del mezzo di unione assegnato), dalle Istruzioni CNR-DT 206/2007;

Frk (kg): è la forza resistente calcolata secondo le relazioni indicate al punto 7.8.2.3 delle Istruzioni CNR-DT 206/2007 in base alle opzioni assegnate nel Laboratorio;

Suggerimenti di modellazione

Allo stato attuale ElWood non supporta metamateriali, pertanto se si modella una struttura in cui sono presenti elementi in C.A. ed elementi in legno, il programma considererà anche gli elementi in C.A. come se fossero elementi lignei.

Al fine di poter operare agevolmente la progettazione e la selezione degli elementi per la stampa dei tabulati, si suggerisce d realizzare il modello in Nòlian operando una opportuna differente assegnazione di Layer e/o Colori, ad elementi costituiti da materiali differenti, in modo da poter spegnere o isolare velocemente in ElWood ed in EasyBeam, gli elementi che non sono di interesse dello specifico post-processore.